The ability to detect and characterize drug binding to a target protein is of high priority in drug discovery research. However, there are inherent challenges when the target of interest is an integral membrane protein (IMP). Assuming successful purification of the IMP, traditional approaches for measuring binding such as surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) have been proven valuable.
View Article and Find Full Text PDFClass II major histocompatibility complex proteins bind peptides for presentation to T-cells as part of the immune response process. Monoclonal antibody MEM-265 recognizes the peptide-free conformation of the major histocompatibility complex class II protein HLA-DR1 through specific binding to an epitope contained between residues 50-67 of the beta-chain. In previous work using alanine scanning (1), we identified residues Leu-53, Asp-57, Tyr-60, Trp-61, Ser-63, and Leu-67 as essential for specific recognition by MEM-265.
View Article and Find Full Text PDFClass II major histocompatibility complex (MHC) proteins bind peptides and present them at the cell surface for interaction with CD4+ T cells as part of the system by which the immune system surveys the body for signs of infection. Peptide binding is known to induce conformational changes in class II MHC proteins on the basis of a variety of hydrodynamic and spectroscopic approaches, but the changes have not been clearly localized within the overall class II MHC structure. To map the peptide-induced conformational change for HLA-DR1, a common human class II MHC variant, we generated a series of monoclonal antibodies recognizing the beta subunit that are specific for the empty conformation.
View Article and Find Full Text PDF