The presence of sinkholes has been widely studied due to their potential risk to infrastructure and to the lives of inhabitants and rescuers in urban disaster areas, which is generally addressed in geotechnics and geophysics. In recent years, robotics has gained importance for the inspection and assessment of areas of potential risk for sinkhole formation, as well as for environmental exploration and post-disaster assistance. From the mobile robotics approach, this paper proposes RUDE-AL (Roped UGV DEployment ALgorithm), a methodology for deploying a Mobile Cable-Driven Parallel Robot (MCDPR) composed of four mobile robots and a cable-driven parallel robot (CDPR) for sinkhole exploration tasks and assistance to potential trapped victims.
View Article and Find Full Text PDFRobots with bio-inspired locomotion systems, such as quadruped robots, have recently attracted significant scientific interest, especially those designed to tackle missions in unstructured terrains, such as search-and-rescue robotics. On the other hand, artificial intelligence systems have allowed for the improvement and adaptation of the locomotion capabilities of these robots based on specific terrains, imitating the natural behavior of quadruped animals. The main contribution of this work is a method to adjust adaptive gait patterns to overcome unstructured terrains using the ARTU-R (A1 Rescue Task UPM Robot) quadruped robot based on a central pattern generator (CPG), and the automatic identification of terrain and characterization of its obstacles (number, size, position and superability analysis) through convolutional neural networks for pattern regulation.
View Article and Find Full Text PDFIn recent years, legged (quadruped) robots have been subject of technological study and continuous development. These robots have a leading role in applications that require high mobility skills in complex terrain, as is the case of Search and Rescue (SAR). These robots stand out for their ability to adapt to different terrains, overcome obstacles and move within unstructured environments.
View Article and Find Full Text PDFThe development of new sensory and robotic technologies in recent years and the increase in the consumption of organic vegetables have allowed the generation of specific applications around precision agriculture seeking to satisfy market demand. This article analyzes the use and advantages of specific optical sensory systems for data acquisition and processing in precision agriculture for Robotic Fertilization process. The SUREVEG project evaluates the benefits of growing vegetables in rows, using different technological tools like sensors, embedded systems, and robots, for this purpose.
View Article and Find Full Text PDFTechnological breakthroughs in recent years have led to a revolution in fields such as Machine Vision and Search and Rescue Robotics (SAR), thanks to the application and development of new and improved neural networks to vision models together with modern optical sensors that incorporate thermal cameras, capable of capturing data in post-disaster environments (PDE) with rustic conditions (low luminosity, suspended particles, obstructive materials). Due to the high risk posed by PDE because of the potential collapse of structures, electrical hazards, gas leakage, etc., primary intervention tasks such as victim identification are carried out by robotic teams, provided with specific sensors such as thermal, RGB cameras, and laser.
View Article and Find Full Text PDFHyper-redundant robots are highly articulated devices that present numerous technical challenges such as their design, control or remote operation. However, they offer superior kinematic skills than traditional robots for multiple applications. This work proposes an original and custom-made design for a discrete and hyper-redundant manipulator.
View Article and Find Full Text PDFA crop monitoring system was developed for the supervision of organic fertilization status on tomato plants at early stages. An automatic and nondestructive approach was used to analyze tomato plants with different levels of water-soluble organic fertilizer (3 + 5 NK) and vermicompost. The evaluation system was composed by a multispectral camera with five lenses: green (550 nm), red (660 nm), red edge (735 nm), near infrared (790 nm), RGB, and a computational image processing system.
View Article and Find Full Text PDFAerial robotic swarms have shown benefits for performing search and surveillance missionsin open spaces in the past. Among other properties, these systems are robust, scalable and adaptableto different scenarios. In this work, we propose a behavior-based algorithm to carry out a surveillancetask in a rectangular area with a flexible number of quadcopters, flying at different speeds.
View Article and Find Full Text PDFThis article presents a new method to solve the inverse kinematics problem of hyper-redundant and soft manipulators. From an engineering perspective, this kind of robots are underdetermined systems. Therefore, they exhibit an infinite number of solutions for the inverse kinematics problem, and to choose the best one can be a great challenge.
View Article and Find Full Text PDFMulti-robot missions are a challenge for operators in terms of workload and situational awareness. These operators have to receive data from the robots, extract information, understand the situation properly, make decisions, generate the adequate commands, and send them to the robots. The consequences of excessive workload and lack of awareness can vary from inefficiencies to accidents.
View Article and Find Full Text PDFMany environmental incidents affect large areas, often in rough terrain constrained by natural obstacles, which makes intervention difficult. New technologies, such as unmanned aerial vehicles, may help address this issue due to their suitability to reach and easily cover large areas. Thus, unmanned aerial vehicles may be used to inspect the terrain and make a first assessment of the affected areas; however, nowadays they do not have the capability to act.
View Article and Find Full Text PDFThe productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses.
View Article and Find Full Text PDFThis paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e.
View Article and Find Full Text PDFIn this study, a device based on patient motion capture is developed for the reliable and non-invasive diagnosis of neurodegenerative diseases. The primary objective of this study is the classification of differential diagnosis between Parkinson's disease (PD) and essential tremor (ET). The DIMETER system has been used in the diagnoses of a significant number of patients at two medical centers in Spain.
View Article and Find Full Text PDFMicro Electro-Mechanical Systems (MEMS) are currently being considered in the space sector due to its suitable level of performance for spacecrafts in terms of mechanical robustness with low power consumption, small mass and size, and significant advantage in system design and accommodation. However, there is still a lack of understanding regarding the performance and testing of these new sensors, especially in planetary robotics. This paper presents what is missing in the field: a complete methodology regarding the characterization and modeling of MEMS sensors with direct application.
View Article and Find Full Text PDF