Publications by authors named "Jaime Coronado"

Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections.

View Article and Find Full Text PDF

The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.

View Article and Find Full Text PDF

A critical step in repurposing the cellular translation machinery for the synthesis of polymeric products is the acylation of transfer RNA (tRNA) with unnatural monomers. Toward this goal, flexizymes, ribozymes capable of aminoacylation, have emerged as a uniquely adept tool for charging tRNA with ever increasingly diverse substrates. In this review, we present a library of monomer substrates that have been tested for tRNA acylation with the flexizyme system.

View Article and Find Full Text PDF

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown.

View Article and Find Full Text PDF

Molecular encoding in sequence-defined polymers shows promise as a new paradigm for data storage. Here, we report what is, to our knowledge, the first use of self-immolative oligourethanes for storing and reading encoded information. As a proof of principle, we describe how a text passage from Jane Austen's was encoded in sequence-defined oligourethanes and reconstructed via self-immolative sequencing.

View Article and Find Full Text PDF

Sequence-defined polymers show promise for biomimetics, self-assembly, catalysis, and information storage, wherein the primary structure begets complex chemical processes. Here we report the solution-phase and the high-yielding solid-phase syntheses of discrete oligourethanes and methods for their self-immolative sequencing, resulting in rapid and robust characterization of this class of oligomers and polymers, without the use of MS/MS. Crucial to the sequencing is the inherent reactivity of the terminal alcohol to "unzip" the oligomers, in a controlled and iterative fashion, releasing each monomer as a 2-oxazolidinone.

View Article and Find Full Text PDF

The site-specific incorporation of noncanonical monomers into polypeptides through genetic code reprogramming permits synthesis of bio-based products that extend beyond natural limits. To better enable such efforts, flexizymes (transfer RNA (tRNA) synthetase-like ribozymes that recognize synthetic leaving groups) have been used to expand the scope of chemical substrates for ribosome-directed polymerization. The development of design rules for flexizyme-catalyzed acylation should allow scalable and rational expansion of genetic code reprogramming.

View Article and Find Full Text PDF

is a large air-breathing fish found in Amazonian rivers, a characteristic that gives this species an advantage in oxygen-deprived waters. It shows high potential for aquaculture in the Amazon region due to its fast growth rate that approaches 10⁻15 kg/year. The aim of this study was to explore the composition of the intestinal bacterial community of reared in Ecuador using 16S rRNA gene high-throughput sequencing.

View Article and Find Full Text PDF