Proc Natl Acad Sci U S A
November 2017
Controlling interactions between proteins and nanoparticles in electrolyte solutions is crucial for advancing biological sciences and biotechnology. The assembly of charged nanoparticles (NPs) and proteins in aqueous solutions can be directed by modifying the salt concentration. High concentrations of monovalent salt can induce the solubilization or crystallization of NPs and proteins.
View Article and Find Full Text PDFColloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the coassembly of DNA-conjugated proteins and spherical gold nanoparticles (AuNPs) as a model system, we explore how steric repulsion between noncomplementary, neighboring NPs due to overlapping DNA shells can influence their ligand-directed behavior.
View Article and Find Full Text PDFHerein, we investigate the use of proteins with tunable DNA modification distributions to modulate nanoparticle superlattice structure. Using beta-galactosidase (βgal) as a model system, we have employed the orthogonal chemical reactivities of surface amines and thiols to synthesize protein-DNA conjugates with 36 evenly distributed or 8 specifically positioned oligonucleotides. When these are assembled into crystalline superlattices with gold nanoparticles, we find that the distribution of DNA modifications modulates the favored structure: βgal with uniformly distributed DNA bonding elements results in body-centered cubic crystals, whereas DNA functionalization of cysteines results in AB packing.
View Article and Find Full Text PDFIn this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface.
View Article and Find Full Text PDFRecent reports of the synthesis and assembly of faceted nanoplates with a wide range of shapes and composition motivates the possibility of a new class of two-dimensional materials with specific patterns targeted for a host of exciting properties. Yet, studies of how nanoplate shape controls their assembly - knowledge necessary for their inverse design from target structures - has been performed for only a handful of systems. By constructing a general framework in which many known faceted nanoplates may be described in terms of four anisotropy dimensions, we discover design rules to guide future synthesis and assembly.
View Article and Find Full Text PDFConsiderable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates.
View Article and Find Full Text PDFMixtures of anisotropic nanocrystals promise a great diversity of superlattices and phase behaviors beyond those of single-component systems. However, obtaining a colloidal shape alloy in which two different shapes are thermodynamically coassembled into a crystalline superlattice has remained a challenge. Here we present a joint experimental-computational investigation of two geometrically ubiquitous nanocrystalline building blocks-nanorods and nanospheres-that overcome their natural entropic tendency toward macroscopic phase separation and coassemble into three intriguing phases over centimeter scales, including an AB2-type binary superlattice.
View Article and Find Full Text PDFProgress in nanocrystal synthesis and self-assembly enables the formation of highly ordered superlattices. Recent studies focused on spherical particles with tunable attraction and polyhedral particles with anisotropic shape, and excluded volume repulsion, but the effects of shape on particle interaction are only starting to be exploited. Here we present a joint experimental-computational multiscale investigation of a class of highly faceted planar lanthanide fluoride nanocrystals (nanoplates, nanoplatelets).
View Article and Find Full Text PDFWe present a microscopic theory that describes the ordering of two distinct ligands on the surface of a facetted nanoparticle. The theory predicts that when one type of ligand is significantly bulkier than all others, the larger ligands preferentially align themselves along the edges and vertices of the nanoparticle. Monte Carlo simulations confirm these predictions.
View Article and Find Full Text PDFPolymer solutions subject to pressure driven flow and in nanoscale slit pores are systematically investigated using the dissipative particle dynamics approach. The authors investigated the effect of molecular weight, polymer concentration, and flow rate on the profiles across the channel of the fluid and polymer velocities, polymer density, and the three components of the polymers radius of gyration. They found that the mean streaming fluid velocity decreases as the polymer molecular weight and/or polymer concentration is increased, and that the deviation of the velocity profile from the parabolic profile is accentuated with increase in polymer molecular weight or concentration.
View Article and Find Full Text PDF