Introduction: Despite continued improvement in post-sepsis survival, long term morbidity and mortality remain high. Chronic critical illness (CCI), defined as persistent inflammation and organ injury requiring prolonged intensive care, is a harbinger of poor long-term outcomes in sepsis survivors. Current dogma states that sepsis survivors are immunosuppressed, particularly in CCI.
View Article and Find Full Text PDFEnhanced critical care delivery has led to improved survival rates in critically ill patients, yet sepsis remains a leading cause of multiorgan failure with variable recovery outcomes. Chronic critical illness, characterised by prolonged ICU stays and persistent end-organ dysfunction, presents a significant challenge in patient management, often requiring multifaceted interventions. Recent research, highlighted in a comprehensive review in the British Journal of Anaesthesia, focuses on addressing the pathophysiological drivers of chronic critical illness, such as persistent inflammation, immunosuppression, and catabolism, through targeted therapeutic strategies including immunomodulation, muscle wasting prevention, nutritional support, and microbiome modulation.
View Article and Find Full Text PDFPostsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types.
View Article and Find Full Text PDFBurn injury is a significant source of morbidity and mortality in the pediatric population. Although 40,000 pediatric patients in the United States are admitted to the hospital with burn wounds annually, significant differences exist in the management and treatment of these patients, even among highly specialized burn centers. Some aspects of pediatric burn research, such as metabolic changes and nutritional support after burn injury, have been studied extensively; however, in many aspects of burn care, pediatric research lags behind the study of adult populations.
View Article and Find Full Text PDFSepsis, a dysregulated host immune response to infection, is one of the leading causes of neonatal mortality worldwide. Improved understanding of the perinatal immune system is critical to improve therapies to both term and preterm neonates at increased risk of sepsis. Our narrative outlines the known and unknown aspects of the human immune system through both the immune tolerant in utero period and the rapidly changing antigen-rich period after birth.
View Article and Find Full Text PDFSepsis remains the single most common cause of mortality and morbidity in hospitalized patients requiring intensive care. Although earlier detection and improved treatment bundles have reduced in-hospital mortality, long-term recovery remains dismal. Sepsis survivors who experience chronic critical illness often demonstrate persistent inflammation, immune suppression, lean tissue wasting, and physical and functional cognitive declines, which often last in excess of 1 year.
View Article and Find Full Text PDFBackground: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate.
View Article and Find Full Text PDFLipopolysaccharide (LPS), one of the main components of cell membranes in gram-negative bacteria, is commonly used to promote inflammation-induced organ dysfunction. In the TLR4/LPS pathway, LPS binding protein and CD14 enable lipid A of LPS to be recognized by the TLR4-MD2 receptor complex. The intracellular domain of the TLR4/LPS complex stimulates MyD88-dependent/independent and TRIF-dependent pathways, which in turn activate NF-B and IRF3, leading to subsequent production of pro-inflammatory mediators.
View Article and Find Full Text PDFBackground: Sepsis-induced gut microbiome alterations contribute to sepsis-related morbidity and mortality. Given evidence for improved postsepsis outcomes in females compared with males, we hypothesized that female mice maintain microbiota resilience versus males.
Methods: Mixed-sex C57BL/6 mice underwent cecal ligation and puncture (CLP) with antibiotics, saline resuscitation, and daily chronic stress and were compared with naive (nonsepsis/no antibiotics) controls.
Background: With the successful implementation of the Surviving Sepsis Campaign guidelines, post-sepsis in-hospital mortality to sepsis continues to decrease. Those who acutely survive surgical sepsis will either rapidly recover or develop a chronic critical illness (CCI). CCI is associated with adverse long-term outcomes and 1-year mortality.
View Article and Find Full Text PDFSurgical sepsis has evolved into two major subpopulations: patients who rapidly recover, and those who develop chronic critical illness (CCI). Our primary aim was to determine whether CCI sepsis survivors manifest unique blood leukocyte transcriptomes in late sepsis that differ from transcriptomes among sepsis survivors with rapid recovery. In a prospective cohort study of surgical ICU patients, genome-wide expression analysis was conducted on total leukocytes in human whole blood collected on days 1 and 14 from sepsis survivors who rapidly recovered or developed CCI, defined as ICU length of stay ≥ 14 days with persistent organ dysfunction.
View Article and Find Full Text PDFStudying the pathophysiology of sepsis still requires animal models, and the mouse remains the most commonly used species. Here we discuss the "cecal slurry" (CS) model of polymicrobial, peritoneal sepsis and compare and contrast it to other commonly used methods. Among the different murine models of sepsis, cecal ligation and puncture (CLP), and not the CS, is often considered the "gold standard" to induce polymicrobial sepsis in laboratory animals.
View Article and Find Full Text PDFFront Med (Lausanne)
February 2021
Improved management of severe sepsis has been one of the major health care accomplishments of the last two decades. Due to enhanced recognition and improved management of severe sepsis, in-hospital mortality has been reduced by up to 40%. With that good news, a new syndrome has unfortunately replaced in-hospital multi-organ failure and death.
View Article and Find Full Text PDFHistorically, murine models of inflammation in biomedical research have been shown to minimally correlate with genomic expression patterns from blood leukocytes in humans. In 2019, our laboratory reported an improved surgical sepsis model of cecal ligation and puncture (CLP) that provides additional daily chronic stress (DCS), as well as adhering to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. This model phenotypically recapitulates the persistent inflammation, immunosuppression, and catabolism syndrome observed in adult human surgical sepsis survivors.
View Article and Find Full Text PDFBackground: Increased circulating myeloid-derived suppressor cells (MDSCs) are independently associated with poor long-term clinical outcomes in sepsis. Studies implicate subsets of MDSCs having unique roles in lymphocyte suppression; however, characterization of these cells after sepsis remains incomplete. We performed a pilot study to determine the transcriptomic landscape in MDSC subsets in sepsis using single-cell RNAseq (scRNA-seq).
View Article and Find Full Text PDFNeonatal sepsis leads to significant morbidity and mortality with the highest risk of death occurring in preterm (<37 weeks) and low birth weight (<2,500 g) infants. The neonatal immune system is developmentally immature with well-described defects in innate and adaptive immune responses. Immune adjuvants used to enhance the vaccine response have emerged as potential therapeutic options, stimulating non-specific immunity and preventing sepsis mortality.
View Article and Find Full Text PDFOlder adults have significantly worse morbidity and mortality after severe trauma than younger cohorts. The competency of the innate immune response decreases with advancing age, especially after an inflammatory insult. Subsequent poor outcomes after trauma are caused in part by dysfunctional leukocytes derived from the host's hematopoietic stem and progenitor cells (HSPCs).
View Article and Find Full Text PDFBackground: Sepsis is an increasingly significant challenge throughout the world as one of the major causes of patient morbidity and mortality. Central to the host immunologic response to sepsis is the increase in circulating myeloid-derived suppressor cells (MDSCs), which have been demonstrated to be present and independently associated with poor long-term clinical outcomes. MDSCs are plastic cells and potentially modifiable, particularly through epigenetic interventions.
View Article and Find Full Text PDFSepsis is a common and deadly complication among trauma and surgical patients. Neutrophils must mobilize to the site of infection to initiate an immediate immune response. To quantify the velocity of spontaneous migrating blood neutrophils, we utilized novel microfluidic approaches on whole blood samples from septic and healthy individuals.
View Article and Find Full Text PDFUnlabelled: Neonates rely on their innate immune system, and neutrophils in particular, to recognize and combat life-threatening bacterial infections. Pretreatment with lipopolysaccharide (LPS), a toll-like receptor (TLR) 4 agonist, improves survival to polymicrobial sepsis in neonatal mice by enhancing neutrophil recruitment. To understand the response of human neonatal neutrophils to TLR4 stimulation, ex vivo spontaneous neutrophil migration, neutrophil transcriptomics, and cytokine production in the presence and absence of LPS were measured directly from whole blood of adults, term neonates, and preterm neonates.
View Article and Find Full Text PDFNeutrophils play a crucial role in combating life-threatening bacterial infections in neonates. Previous studies investigating neonatal cell function have been limited because of restricted volume sampling. Here, using novel microfluidic approaches, we provide the first description of neutrophil chemotaxis and transcriptomics from whole blood of human term and preterm neonates, as well as young adults.
View Article and Find Full Text PDFEssentially, all neonates are exposed to infections, antibiotics, or vaccines early in their lives. This is especially true for those neonates born underweight or premature. In contrast to septic adults and children who are at an increased risk for subsequent infections, exposure to infection during the neonatal period is not associated with an increased risk of subsequent infection and may be paradoxically associated with reductions in late-onset sepsis (LOS) in the most premature infants.
View Article and Find Full Text PDF