Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a key role in the pathogenesis and physiology of inflammatory and autoimmune diseases, such as coronary heart disease, cancer, Alzheimer's disease, asthma, rheumatoid arthritis, and most recently COVID-19. IL-6 and its signaling pathway are promising targets in the treatment of inflammatory and autoimmune diseases. Although, anti-IL-6 monoclonal antibodies are currently being used in clinics, huge unmet medical needs remain because of the high cost, administration-related toxicity, lack of opportunity for oral dosing, and potential immunogenicity of monoclonal antibody therapy.
View Article and Find Full Text PDFRecent development of the chemical inhibitors specific to oncogenic KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog) mutants revives much interest to control KRAS-driven cancers. Here, we report that AIMP2-DX2, a variant of the tumor suppressor AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), acts as a cancer-specific regulator of KRAS stability, augmenting KRAS-driven tumorigenesis. AIMP2-DX2 specifically binds to the hypervariable region and G-domain of KRAS in the cytosol prior to farnesylation.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) have always been important drug targets in the pharmaceutical industry. One major question for the current GPCR drug discovery is how drugs have distinct efficacies at the same GPCR target. Related to this question, we studied how different ligands can have disparate efficacies at Leukotriene B receptor (BLT2).
View Article and Find Full Text PDFWhen intracellular reactive oxygen species (ROS) increase, cancer cells are more vulnerable to oxidative stress compared to normal cells; thus, the collapse of redox homeostasis can lead to selective death of cancer cells. Indeed, recent studies have shown that inhibition of sulfiredoxin (Srx), which participates in antioxidant mechanisms, induces ROS-mediated cancer cell death. In this paper, we describe how an Srx inhibitor, J14 (4-[[[4-[4-(2-chlor-ophenyl)-1-piperazinyl]-6-phenyl-2-pyrimidinyl]thio]methyl]-benzoic acid), interferes with the antioxidant activity of Srx at the molecular level.
View Article and Find Full Text PDFDiacylglycerol acyltransferases (DGATs) play a critical role in the biosynthesis of endogenous triglycerides (TGs) and formation of lipid droplets (LDs) in the liver. In particular, one member of DGATs, DGAT-1 was reported to be an essential host factor for the efficient production of hepatitis C virus (HCV) particles. By utilizing our previously characterized three different groups of twelve DGAT inhibitors, we found that one of the DGAT inhibitors, a 2-((4-adamantylphenoxy) methyl)--(furan-2-ylmethyl)-1-benzo[d]imidazole-5-carboxam () is a potent suppressor of both HCV genome replication and particle production.
View Article and Find Full Text PDFAstrocytes play a key role in brain homeostasis, protecting neurons against neurotoxic stimuli such as oxidative stress. Therefore, the neuroprotective therapeutics that enhance astrocytic functionality has been regarded as a promising strategy to reduce brain damage. We previously reported that ciclopirox, a well-known antifungal N-hydroxypyridone compound, protects astrocytes from oxidative stress by enhancing mitochondrial function.
View Article and Find Full Text PDFWe synthesized (+)-decursin derivatives substituted with cinnamoyl- and phenyl propionyl groups originating from (+)-CGK062 and screened them using a cell-based assay to detect relative luciferase reporter activity. Of this series, compound 8b, in which a 3-acetoxy cinnamoyl group was introduced, most potently inhibited (97.0%) the Wnt/β-catenin pathway.
View Article and Find Full Text PDFOsteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes.
View Article and Find Full Text PDFA series of oxazolidinone and indole derivatives were synthesized and evaluated as IL-6 signaling blockers by measuring the effects of these compounds on IL-6-induced luciferase expression in human hepatocarcinoma HepG2 cells transfected with p-STAT3-Luc. Among different compounds screened, compound 4d was emerged as the most potent IL-6 signaling blockers with IC50 value of 5.9 μM which was much better than (+)-Madindoline A (IC50=21 μM), a known inhibitor of IL-6.
View Article and Find Full Text PDFAims: The intrinsic increase of reactive oxygen species (ROS) production in cancer cells after malignant transformation frequently induces redox adaptation, leading to enhanced antioxidant capacity. Peroxiredoxin I (PrxI), an enzyme responsible for eliminating hydrogen peroxide, has been found to be elevated in many types of cancer cells. Since overexpression of PrxI promoted cancer cells' survival and resistance to chemotherapy and radiotherapy, PrxI has been proposed as a therapeutic target for anticancer drugs.
View Article and Find Full Text PDFAnticancer Agents Med Chem
December 2016
In the recent few years, the emergence of heterocyclic ring-containing anti-cancer agents has gained a great deal of attention among medicinal chemists. Among these, azepine-based compounds are particularly becoming attractive recently. In this Focus Review, we highlight the recent advancements in the development of azepine-based anti-cancer compounds since the year 2000.
View Article and Find Full Text PDFIL-6 is a major causative factor of inflammatory disease. Although IL-6 and its signaling pathways are promising targets, orally available small-molecule drugs specific for IL-6 have not been developed. To discover IL-6 antagonists, we screened our in-house chemical library and identified LMT-28, a novel synthetic compound, as a candidate IL-6 blocker.
View Article and Find Full Text PDFWe report a new series of naphthoquinone derivatives as potent ACAT inhibitors, which were obtained through structural variations of previously disclosed lead 1. Several analogs represented by 3i-l, 4k-m, 6a-n, 7a, and 7i demonstrated potent human macrophage ACAT inhibitory activity by a cell-based reporter assay with human HepG2 cell lines. In particular, compounds 4l and 6j emerged as highly potent inhibitors, exhibiting significantly high inhibitory potencies with IC50 values of 0.
View Article and Find Full Text PDFA series of indolyl acrylamide derivatives was synthesized as potential diacylglycerol acyltransferase (DGAT) inhibitors. Furfurylamine containing indolyl acrylamide derivative 5h exhibited the most potent DGAT inhibitory activity using microsomes prepared from rat liver. Further evaluation against human DGAT-1 and DGAT-2 identified indolyl acrylamide analogues as selective inhibitors against human DGAT-2.
View Article and Find Full Text PDFA novel series of benzimidazole derivatives was prepared and evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity using microsome from rat liver. Among the newly synthesized compounds, furfurylamine containing benzimidazole carboxamide 10j showed the most potent DGAT inhibitory effect (IC(50)=4.4 μM) and inhibited triglyceride formation in HepG2 cells.
View Article and Find Full Text PDFA variety of diazepinone derivatives were prepared from α-amino acids and amino alcohols by a new synthetic methodology based on ring closing metathesis as a key step. The diazepinones were coupled with ribose derivatives to afford novel diazepinone nucleosides. Among them, (4R)-1-ribosyl-4-methyl-3,4-dihydro-1H-1,3-diazepin-2(7H)-one (3) showed a potent inhibitory effect (K(i) = 145.
View Article and Find Full Text PDF