Traumatic brain injury (TBI) is the leading cause of injury-related death and disability in patients under the age of 46 years. Survivors of the initial injury often endure systemic complications such as pulmonary infection, and is one of the most common causes of nosocomial pneumonia in intensive care units. Female patients are less likely to develop secondary pneumonia after TBI, and pre-clinical studies have revealed a salutary role for estrogen after trauma.
View Article and Find Full Text PDFis a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection.
View Article and Find Full Text PDFPurpose: Hemodilutional anemia is associated with acute kidney injury (AKI) and mortality in patients undergoing cardiac surgery by mechanisms that may include tissue hypoxia. Our hypothesis was to assess if changes in the potential hypoxic biomarkers, including methemoglobin and erythropoietin, correlated with a decrease in hemoglobin (Hb) concentration following hemodilution on cardiopulmonary bypass (CPB).
Methods: Arterial blood samples were taken from patients (n = 64) undergoing heart surgery and CPB at baseline, during CPB, following CPB, and in the intensive care unit (ICU).
Background: Trauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have suggested that poorer therapeutic efficacy, increased severity of organ injury, and increased bacterial infection are associated with transfusion of large volumes of stored RBCs, although the mechanisms are not fully understood.
View Article and Find Full Text PDFReduction of salivary nitrate to nitrite by oral microbes expressing nitrate-reductase has emerged as a crucial pathway in systemic NO homeostasis in humans and other mammals. Selective depletion of oral microbes prevents dietary nitrate-dependent lowering of blood pressure, inhibition of platelet aggregation and ischemic injury. To date, most studies interrogate enterosalivary nitrate reduction by following changes in saliva or plasma nitrite and NO-signaling (functional) end points.
View Article and Find Full Text PDFChlorine (Cl) gas exposure and toxicity remains a concern in military and industrial sectors. While post-Cl exposure damage to the lungs and other tissues has been documented and major underlying mechanisms elucidated, no targeted therapeutics that are effective when administered post-exposure, and which are amenable to mass-casualty scenarios have been developed. Our recent studies show nitrite administered by intramuscular (IM) injection post-Cl exposure is effective in preventing acute lung injury and improving survival in rodent models.
View Article and Find Full Text PDFExposure to chlorine (Cl2) gas can occur during accidents and intentional release scenarios. However, biomarkers that specifically indicate Cl2 exposure and Cl2-derived products that mediate postexposure toxicity remain unclear. We hypothesized that chlorinated lipids (Cl-lipids) formed by direct reactions between Cl2 gas and plasmalogens serve as both biomarkers and mediators of post-Cl2 gas exposure toxicities.
View Article and Find Full Text PDFTransfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Pro-oxidant, pro-inflammatory, and nitric oxide (NO) scavenging properties of stored RBCs are thought to underlie this association. In this study we determined the effects of RBC washing and nitrite and antiheme therapy on stored RBC-dependent toxicity in the setting of trauma-induced hemorrhage.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2014
Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure.
View Article and Find Full Text PDFExposure to chlorine (Cl2) gas during industrial accidents or chemical warfare leads to significant airway and distal lung epithelial injury that continues post exposure. While lung epithelial injury is prevalent, relatively little is known about whether Cl2 gas also promotes injury to the pulmonary vasculature. To determine this, rats were subjected to a sub-lethal Cl2 gas exposure (400 ppm, 30 min) and then brought back to room air.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) due to sepsis has a high mortality rate with limited treatment options. High density lipoprotein (HDL) exerts innate protective effects in systemic inflammation. However, its role in ARDS has not been well studied.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
March 2013
Two of the proposed mechanisms by which red blood cells (RBC) mediate hypoxic vasorelaxation by coupling hemoglobin deoxygenation to the activation of nitric oxide signaling involve ATP-release from RBC and S-nitrosohemoglobin (b93C(SNO)Hb) dependent bioactivity. However, different studies have reached opposite conclusions regarding the aforementioned mechanisms. Using isolated vessels, hypoxic vasorelaxation induced by human, C57BL/6 or mouse RBC which exclusively express either native human hemoglobin (HbC93) or human hemoglobin in which the conserved b93cys was replaced with Ala (HbC93A) were compared.
View Article and Find Full Text PDFAntioxid Redox Signal
October 2013
Aims: Recent studies have suggested that in addition to oxygen transport, red blood cells (RBC) are key regulators of vascular function by both inhibiting and promoting nitric oxide (NO)-mediated vasodilation. Most studies assume that RBC are homogenous, but, in fact, they comprise cells of differing morphology and biochemical composition which are dependent on their age, parameters that control NO reactions. We tested the hypothesis that distinct RBC populations will have differential effects on NO signaling.
View Article and Find Full Text PDFCl(2) gas toxicity is complex and occurs during and after exposure, leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl(2) exposure can occur in diverse situations encompassing mass casualty scenarios, highlighting the need for postexposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we assessed the efficacy of a single dose of nitrite (1 mg/kg) to decrease ALI when administered to rats via intraperitoneal (ip) or intramuscular (im) injection 30 min after Cl(2) exposure.
View Article and Find Full Text PDFAcellular hemoglobin (Hb)-based O2 carriers (HBOCs) are being investigated as red blood cell (RBC) substitutes for use in transfusion medicine. However, commercial acellular HBOCs elicit both vasoconstriction and systemic hypertension which hampers their clinical use. In this study, it is hypothesized that encapsulation of Hb inside the aqueous core of liposomes should regulate the rates of NO dioxygenation and O2 release, which should in turn regulate its vasoactivity.
View Article and Find Full Text PDFChlorine gas (Cl(2)) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl(2) exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl(2) promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling.
View Article and Find Full Text PDFHigh density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) reduce inflammatory responses to lipopolysaccharide (LPS). We tested the hypothesis that the apoA-I mimetic peptide 4F prevents LPS-induced defects in blood pressure and vascular reactivity. Systolic blood pressure (SBP) was measured in rats at baseline and 6 h after injection of LPS (10 mg/kg) or saline vehicle.
View Article and Find Full Text PDF