Publications by authors named "Jaianth Vijayakumar"

Solid dosage forms such as tablets are extensively used in drug administration for their simplicity and large-scale manufacturing capabilities. High-resolution X-ray tomography is one of the most valuable non-destructive techniques to investigate the internal structure of the tablets for drug product development as well as for a cost effective production process. In this work, we review the recent developments in high-resolution X-ray microtomography and its application towards different tablet characterizations.

View Article and Find Full Text PDF

Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g.

View Article and Find Full Text PDF

Understanding chemical reactivity and magnetism of 3d transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to CoO and void formation due to the nanoscale Kirkendall effect.

View Article and Find Full Text PDF

Unlabelled: Charge mediated magnetoelectric coupling mechanism in artificial multiferroics originates from interfacial charge modulation or ionic movement at a magnetic/dielectric interface. Despite the existence of several dielectric/ferroelectric systems that can be used in charge mediated artificial multiferroic systems, producing suitable systems with fast time responses still remains a challenge. Here we characterize the frequency response of stoichiometric and non-stoichiometric (low strain) Si N thin film membranes, which can potentially be used as the dielectric layer in magnetoelectric devices, to determine the impact of depletion layers, charge traps and defect mobility on the high frequency (up to 100 MHz) interfacial charge modulation via screening.

View Article and Find Full Text PDF

The impressive progress in the performance of synchrotron radiation sources is nowadays driven by the so-called `ultimate storage ring' projects which promise an unprecedented improvement in brightness. Progress on the detector side has not always been at the same pace, especially as far as soft X-ray 2D detectors are concerned. While the most commonly used detectors are still based on microchannel plates or CCD technology, recent developments of CMOS (complementary metal oxide semiconductor)-type detectors will play an ever more important role as 2D detectors in the soft X-ray range.

View Article and Find Full Text PDF

Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction.

View Article and Find Full Text PDF

Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations.

View Article and Find Full Text PDF

Universal, giant and nonvolatile resistive switching is demonstrated for oxide tunnel junctions with ferroelectric PbZr0.2 Ti0.8 O3 , ferroelectric BaTiO3, and paraelectric SrTiO3 tunnel barriers.

View Article and Find Full Text PDF