The COVID-19 vaccine has been available in India since January 2021, although many individuals have refused to take the vaccine for various reasons. Vaccination plays a crucial role in disease control by preventing a substantial number of cases and associated disabilities. However, vaccine hesitancy poses a barrier that hinders these efforts.
View Article and Find Full Text PDFHuman mobility, which refers to the movement of people from one location to another, is believed to be one of the key factors shaping the dynamics of the COVID-19 pandemic. There are multiple reasons that can change human mobility patterns, such as fear of an infection, control measures restricting movement, economic opportunities, political instability, etc. Human mobility rates are complex to estimate as they can occur on various time scales, depending on the context and factors driving the movement.
View Article and Find Full Text PDFCOVID-19 is a respiratory disease triggered by an RNA virus inclined to mutations. Since December 2020, variants of COVID-19 (especially Delta and Omicron) continuously appeared with different characteristics that influenced death and transmissibility emerged around the world. To address the novel dynamics of the disease, we propose and analyze a dynamical model of two strains, namely native and mutant, transmission dynamics with mutation and imperfect vaccination.
View Article and Find Full Text PDFBiological control using natural enemies with additional food resources is one of the most adopted and ecofriendly pest control techniques. Moreover, additional food is also provided to natural enemies to divert them from cannibalism. In the present work, using the theory of dynamical system, we discuss the dynamics of a cannibalistic predator prey model in the presence of different harvesting schemes in prey (pest) population and provision of additional food to predators (natural enemies).
View Article and Find Full Text PDFMulti-strain diseases lead to the development of some degree of cross-immunity among people. In the present paper, we propose a multi-delayed SIRC epidemic model with incubation and immunity time delays. Here we aim to examine and investigate the effects of incubation delay [Formula: see text] and the impact of vaccine which provides partial/cross-immunity with immunity delay parameter ([Formula: see text]) on the disease dynamics.
View Article and Find Full Text PDFCommun Nonlinear Sci Numer Simul
August 2023
A deterministic model with testing of infected individuals has been proposed to investigate the potential consequences of the impact of testing strategy. The model exhibits global dynamics concerning the disease-free and a unique endemic equilibrium depending on the basic reproduction number when the recruitment of infected individuals is zero; otherwise, the model does not have a disease-free equilibrium, and disease never dies out in the community. Model parameters have been estimated using the maximum likelihood method with respect to the data of early COVID-19 outbreak in India.
View Article and Find Full Text PDFThe effective reproduction number, $ R_t $, is a vital epidemic parameter utilized to judge whether an epidemic is shrinking, growing, or holding steady. The main goal of this paper is to estimate the combined $ R_t $ and time-dependent vaccination rate for COVID-19 in the USA and India after the vaccination campaign started. Accounting for the impact of vaccination into a discrete-time stochastic augmented SVEIR (Susceptible-Vaccinated-Exposed-Infectious-Recovered) model, we estimate the time-dependent effective reproduction number $ (R_t) $ and vaccination rate $ (\xi_t) $ for COVID-19 by using a low pass filter and the Extended Kalman Filter (EKF) approach for the period February 15, 2021 to August 22, 2022 in India and December 13, 2020 to August 16, 2022 in the USA.
View Article and Find Full Text PDFIn this paper we assess the effectiveness of different non-pharmaceutical interventions (NPIs) against COVID-19 utilizing a compartmental model. The local asymptotic stability of equilibria (disease-free and endemic) in terms of the basic reproduction number have been determined. We find that the system undergoes a backward bifurcation in the case of imperfect quarantine.
View Article and Find Full Text PDFThe COVID-19 pandemic has placed epidemiologists, modelers, and policy makers at the forefront of the global discussion of how to control the spread of coronavirus. The main challenges confronting modelling approaches include real-time projections of changes in the numbers of cases, hospitalizations, and fatalities, the consequences of public health policy, the understanding of how best to implement varied non-pharmaceutical interventions and potential vaccination strategies, now that vaccines are available for distribution. Here, we: (i) review carefully selected literature on COVID-19 modeling to identify challenges associated with developing appropriate models along with collecting the fine-tuned data, (ii) use the identified challenges to suggest prospective modeling frameworks through which adaptive interventions such as vaccine strategies and the uses of diagnostic tests can be evaluated, and (iii) provide a novel Multiresolution Modeling Framework which constructs a multi-objective optimization problem by considering relevant stakeholders' participatory perspective to carry out epidemic nowcasting and future prediction.
View Article and Find Full Text PDFInfectious diseases have been one of the major causes of human mortality, and mathematical models have been playing significant roles in understanding the spread mechanism and controlling contagious diseases. In this paper, we propose a delayed SEIR epidemic model with intervention strategies and recovery under the low availability of resources. Non-delayed and delayed models both possess two equilibria: the disease-free equilibrium and the endemic equilibrium.
View Article and Find Full Text PDFIn the absence of effective vaccine/antiviral strategies for reducing the burden of the coronavirus disease 2019 (COVID-19) pandemic in India, the main focus has been on basic non-pharmaceutical interventions (NPIs), such as nationwide lockdown (travel restrictions and the closure of schools, shopping malls, and worshipping and other gathering places), quarantining of exposed individuals, and isolation of infected individuals. In the present study, we propose a compartmental epidemic model incorporating quarantine and isolation compartments to (i) describe the current transmission patterns of COVID-19 in India, (ii) assess the impact of currently implemented NPIs, and (iii) predict the future course of the pandemic with various scenarios of NPIs in India. For R<1, the system has a globally asymptotically stable disease free equilibrium, while for R>1, the system has one unstable disease free equilibrium and a unique locally stable endemic equilibrium.
View Article and Find Full Text PDFAn outbreak of rapidly spreading coronavirus established human to human transmission and now became a pandemic across the world. The new confirmed cases of infected individuals of COVID-19 are increasing day by day. Therefore, the prediction of infected individuals has become of utmost important for health care arrangements and to control the spread of COVID-19.
View Article and Find Full Text PDF