Publications by authors named "Jai P Jaiswal"

Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS).

View Article and Find Full Text PDF

Unlabelled: Improvement of grain protein content (GPC), loaf volume, and resistance to rusts was achieved in 11 Indian wheat cultivars that are widely grown in four different agro-climatic zones of India. This involved use of marker-assisted backcross breeding (MABB) for introgression and pyramiding of the following genes: (i) the high GPC gene ; (ii) HMW glutenin subunits 5 + 10 at loci, and (iii) rust resistance genes, , , , and . GPC increased by 0.

View Article and Find Full Text PDF

Micronutrient and protein malnutrition is recognized among the major global health issues. Genetic biofortification is a cost-effective and sustainable strategy to tackle malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC), and thousand kernel weight (TKW) were investigated in a set of 163 recombinant inbred lines (RILs) derived from a cross between cultivated wheat variety WH542 and a synthetic derivative ( PI94624/ [409]//BCN).

View Article and Find Full Text PDF

The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.

View Article and Find Full Text PDF

Increasing nutritional value of cereals is one of the important research and breeding objectives to overcome malnutrition in developing countries. The synthesis of grain seed proteins during grain filling is controlled by several mechanisms including transcriptional and posttranscriptional modifications. In the current investigation, transcript abundance analysis of three allelic variants of seed storage protein activator ( and and - affecting seed nutrient concentration was carried out in two genotypes (UP 2672 and HS 540) of bread wheat differing in grain protein content.

View Article and Find Full Text PDF

Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in six environments and evaluated for Fe, Zn, PC, and TKW. The population showed the continuous distribution for all the four traits, that for pooled Fe and PC was near normal, whereas, for pooled Zn, RILs exhibited positively skewed distribution.

View Article and Find Full Text PDF

Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910-2006 for commercial cultivation in different agro-climatic regions in India).

View Article and Find Full Text PDF

To explore the adaptability of bread wheat to dehydration stress, we screened 28 cultivars collected from different agroclimatic zones, on the basis of malonaldehyde content as biochemical marker in roots of wheat seedlings during germination and classified them as highly tolerant, tolerant, sensitive and highly sensitive. From this primary screening, ten cultivars that showed differential responses to dehydration stress were selected to understand the biochemical and physiological basis of stress tolerance mechanisms. The highly tolerant cultivars showed lower levels of lipid peroxidation, less membrane damage, increased levels of antioxidants, enzymes like catalase, ascorbate peroxidase, glutathione reductase activities, and maintained higher relative water content in comparison to sensitive cultivars, indicating better protection mechanism operating in tolerant cultivars.

View Article and Find Full Text PDF