Publications by authors named "Jahur A Mondal"

Polyethylene glycol (PEG) is a water soluble, non-ionic polymer with applications in drug delivery, protein precipitation, anti-biofouling, water-splitting, Li-ion batteries, and fuel cells. The interaction of PEG with water and electrolytes plays pivotal roles in such applications. Using interface-selective spectroscopy, heterodyne-detected vibrational sum frequency generation, and Raman difference spectroscopy with simultaneous curve fitting analysis, we show that water adopts different structures and orientations at the air/water-PEG interface, which depends on the molar mass of the PEG.

View Article and Find Full Text PDF

Polyethylene glycol (PEG), a water-soluble non-ionic polymer, finds diverse applications from Li-ion batteries to drug delivery. The effectiveness of PEG in these contexts hinges on water's behavior at PEG/water interfaces. Employing heterodyne-detected vibrational sum frequency generation and Raman spectroscopy along with a novel analytical approach, termed difference spectroscopy with simultaneous curve-fitting analysis, we observed that water exhibits both "hydrogen-up" and "hydrogen-down" orientations at PEG(≥400u)/water interfaces.

View Article and Find Full Text PDF

Intra- and intermolecular vibrational coupling (VC) and hydrogen bonding (H-bonding) of water are sparsely understood in the hydration shell (HS) of a metal ion, though the corresponding knowledge for an anion is quite extensive. This is primarily due to the overwhelming effect of anions on water, which masks the subtle perturbing influence of most of the cations. Using Raman difference spectroscopy with simultaneous curve fitting (Raman-DS-SCF) in combination with isotopic dilution and polarized Raman spectroscopy, we have elucidated the VC and H-bonding of water in the HS of bi- and trivalent metal ions─Mg, Ca, La, Gd, Dy.

View Article and Find Full Text PDF

Perfluoro compounds are widely used in various manufacturing processes, which leads to their bioaccumulation and subsequent adverse effects on human health. Using interface-selective vibrational spectroscopy (heterodyne-detected vibrational sum frequency generation (HD-VSFG)), we have elucidated the molecular mechanism of the perturbation of lipid monolayers on the water surface using a prototype perfluorinated persistent organic pollutant, perfluoroheptanoic acid (PFHA). PFHA disrupts the well-ordered all-trans conformation of a cationic lipid (1,2-dipalmitoyl-3-trimethylammonium propane (DPTAP)) monolayer and reduces the interfacial electric field at the lipid/water interface.

View Article and Find Full Text PDF

Interaction of trimethylamine -oxide (TMAO) with charged/uncharged moieties of proteins and lipids is an important elementary step toward the multifaceted biofunctions of TMAO. Using minimum area Raman difference spectroscopy (MA-RDS) of aqueous TMAO (1.0 M) in the presence of deuterated molecular hydrophobes (e.

View Article and Find Full Text PDF

The ion-driven electric double layer (EDL) and the structural transformation of interfacial water are implicated in unusual reaction kinetics at the air/water interface. By combining heterodyne-detected vibrational sum frequency generation (HD-VSFG) with differential spectroscopy involving simultaneous curve fitting (DS-SCF) analysis, we retrieve electrolyte (NaCO and NaF)-correlated OH-stretch spectra of water at the air/water interface. Vibrational mapping of the perturbed interfacial water with the hydration shell spectra (obtained by DS-SCF analysis of Raman spectra) of the corresponding anion discloses that the kosmotropic electrolytes do not form well-defined EDL at the air/water interface.

View Article and Find Full Text PDF

The prevalence of ions at the aqueous interface has been widely recognized, but their effect on the structure of interfacial water (e.g., hydrogen (H)-bonding) remains enigmatic.

View Article and Find Full Text PDF

Interaction of α-Synuclein (αS) with biological lipids is crucial for the onset of its fibrillation at the cell membrane/water interface. Probed herein is the interaction of αS with membrane-mimicking lipid monolayer/water interfaces. The results depict that αS interacts negligibly with zwitterionic lipids, but strongly affects the pristine air/water and charged lipid/water interfaces by perturbing the structure and orientation of the interfacial water.

View Article and Find Full Text PDF

Hydration of ions plays a crucial role in interionic interactions and associated processes in aqueous media, but selective probing of the hydration shell water is nontrivial. Here, we introduce Raman difference with simultaneous curve fitting (RD-SCF) analysis to extract the OH-stretch spectrum of hydration shell water, not only for the fully hydrated ions (Mg, La, and Cl) but also for the ion pairs. RD-SCF analyses of diluted MgCl (0.

View Article and Find Full Text PDF

Following a nuclear accident, radioactive iodine causes great concern to public health and safety. Organic iodide, because of its ability to escape reactor containment building and high environmental mobility, constitutes a predominant fraction of airborne radioiodine at places far away from the accident site. As the iodine released from a reactor core is inorganic iodine, it is vital to understand the mechanism of organic iodide formation inside reactor containment.

View Article and Find Full Text PDF

The behavior of perfluorinated persistent organic pollutants (POPs), especially perfluoroalkyl carboxylic and sulfonic acids, at aqueous interfaces is crucial for their transport and speciation in the environment and subsequent immunotoxicity. Here, we investigate the surface prevalence and interfacial interaction of a prototype perfluorinated-POP, perfluoroheptanoic acid (PFHA), with environmentally relevant amphiphiles of varying hydrophobicity and head groups (CH-; : 8 vs 16; -: -OH vs -COOH) using interface-selective vibrational sum frequency generation (VSFG) spectroscopy. SFG intensity spectra in the CH- and OH-stretch regions reveal that PFHA prevails at aqueous interfaces that contain amphiphiles of intermediate chain length such as 1-octanol ( = 8) and heptanoic acid ( = 6).

View Article and Find Full Text PDF

Iodine plays a key role in tropospheric ozone destruction, atmospheric new particle formation, as well as growth. Air-water interface happens to be an important reaction site pertaining to such phenomena. However, except iodide (I), the behavior of other iodine species, for example, triiodide (I) and iodate (IO, the most abundant iodine species in seawater) at the aqueous interface and their effect on the interfacial water are largely unknown.

View Article and Find Full Text PDF

Although the hydrophobic size of an amphiphile plays a key role in various chemical, biological, and atmospheric processes, its effect at macroscopic aqueous interfaces (e.g., air-water, oil-water, cell membrane-water, etc.

View Article and Find Full Text PDF

Trimethylamine N-oxide (TMAO), a metabolite of choline containing dietary nutrients which are abundant in red meat, egg, and other animal foods, increases the risk of cardiovascular disease (e.g., atherosclerosis) by boosted accumulation of fatty deposits on artery wall.

View Article and Find Full Text PDF

Hydrogen-bonding and intra/intermolecular vibrational coupling of water next to a hydrophobic molecule (tert-butyl alcohol, TBA) have been studied by Raman multivariate curve resolution (Raman-MCR) and isotopic dilution spectroscopy. Raman-MCR provides the vibrational spectrum of water pertinent to the hydration shell of TBA, which shows a distinct Raman band at around 3660 cm(-1) corresponding to the dangling OH in the hydration shell. The presence of positive charge on the hydrophobe decreases the propensity of dangling OH in the hydration shell, presumably due to unfavorable electrostatic interaction.

View Article and Find Full Text PDF

The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water.

View Article and Find Full Text PDF

Raman spectroscopy in combination with multivariate curve resolution (Raman-MCR) is used to explore the interaction between water and various kosmotropic and chaotropic anions. Raman-MCR of aqueous Na-salt (NaI, NaBr, NaNO3, Na2SO4, and Na3PO4) solutions provides solute-correlated Raman spectra (SC-spectra) of water. The SC-spectra predominantly bear the vibrational characteristics of water in the hydration shell of anions, because Na(+)-cation has negligible effect on the OH stretch band of water.

View Article and Find Full Text PDF

Water in the presence of electrolytes plays an important role in biological and industrial processes. The properties of water, such as the intermolecular coupling, Fermi resonance (FR), hydrogen-bonding, and Raman cross section were investigated by measuring the Raman spectra in the OD and OH stretch regions in presence of alkali halides (NaX; X = F, Cl, Br, I). It is observed that the changes in spectral characteristics by the addition of NaX in D2O are similar to those obtained by the addition of H2O in D2O.

View Article and Find Full Text PDF

Vibrational sum-frequency generation (VSFG) spectroscopy is a powerful tool to study interfaces. Recently, multiplex heterodyne-detected VSFG (HD-VSFG) has been developed, which enables the direct measurement of complex second-order nonlinear susceptibility [χ((2))]. HD-VSFG has remarkable advantages over conventional VSFG.

View Article and Find Full Text PDF

Azo-compounds containing an imidazole moiety have the potential to photoregulate biofunctions, such as gene-expression and enzymatic action. Photoinduced isomerization of the azo-backbone is the vital process for such applications, but the photoisomerization dynamics of azo-imidazole compounds has not been well explored. We investigated the photoisomerization dynamics of trans-N-1-methyl-2-(tolylazo) imidazole (trans-MTAI) using femtosecond transient absorption spectroscopy following photoexcitation to the S(2) state.

View Article and Find Full Text PDF

Lipid/water interfaces and associated interfacial water are vital for various biochemical reactions, but the molecular-level understanding of their property is very limited. We investigated the water structure at a zwitterionic lipid, phosphatidylcholine, monolayer/water interface using heterodyne-detected vibrational sum frequency generation spectroscopy. Isotopically diluted water was utilized in the experiments to minimize the effect of intra/intermolecular couplings.

View Article and Find Full Text PDF

Relaxation dynamics of the excited state of bis-[4-(dimethylamino)-phenyl] methaniminium chloride (Auramine) has been investigated using subpicosecond time-resolved absorption spectroscopic technique in both aprotic and alcoholic solvents. The locally excited (LE) state, formed following photoexcitation of Auramine using 400 nm light, undergoes intramolecular charge transfer (ICT) process, which is accompanied by the twisting of the dimethylanilino groups. Time evolution of the transient absorption-stimulated emission spectra as well as the wavelength dependence of the temporal dynamics investigated in each kind of solvents suggest that the relaxation process proceeds via the formation of at least two transient states (TS I and TS II), which are geometrical conformers and consecutively formed following the decay of the LE state.

View Article and Find Full Text PDF

Dynamics of the excited singlet (S(1)) state of curcumin has been investigated in a wide varieties of solvents using subpicosecond time-resolved fluorescence and absorption spectroscopic techniques. As a consequence of extra stability of the cis-enol conformer due to the presence of an intramolecular hydrogen bond, it is the major form existing in the ground-state and the excited-state processes described here has been attributed to this form. Steady-state absorption and fluorescence spectra suggest significant perturbation of the intramolecular hydrogen bond and the possibility of formation of intermolecular hydrogen-bonded complex with the hydrogen-bonding solvents.

View Article and Find Full Text PDF

Cell membrane/water interfaces provide a unique environment for many biochemical reactions, and associated interfacial water is an integral part of such reactions. A molecular level understanding of the structure and orientation of water at lipid/water interfaces is required to realize the complex chemistry at biointerfaces. Here we report the heterodyne-detected vibrational sum frequency generation (HD-VSFG) studies of lipid monolayer/water interfaces.

View Article and Find Full Text PDF

We have investigated the relaxation dynamics of the higher excited states of the uranyl ion in aqueous and methanolic solutions following photoexcitation to the S(1)((1)Phi(g)) state using 400 nm light. Although the time-resolved spectra are significantly different in these two solvents, the temporal dynamics studied in the entire wavelength region clearly suggest the involvement of three excited state processes in both solvents. The S(1)((1)Phi(g)) state undergoes ultrafast intersystem crossing (tau(ISC) approximately <100 fs) to the higher vibrational levels of the T(2)((3)Delta(g)) state, followed by the intramolecular vibrational relaxation (IVR) process in the later electronic state (tau(IVR) approximately 0.

View Article and Find Full Text PDF