Publications by authors named "Jahoda C"

Wounding induces a calcium wave and disrupts the calcium gradient across the epidermis but mechanisms mediating calcium and downstream signalling, and longer-term wound healing responses are incompletely understood. As expected, live-cell confocal imaging of Fluo-4-loaded normal human keratinocytes showed an immediate increase in [Ca ] at the wound edge that spread as a calcium wave (8.3 µm/s) away from the wound edge with gradually diminishing rate of rise and amplitude.

View Article and Find Full Text PDF

Dermal papilla cells (DPCs) play a pivotal role in the regulation of hair follicle (HF) growth, formation, and cycling, mainly through paracrine mechanisms. In the last decade, extracellular vesicles (EVs) have been recognized as a new paracrine mechanism that can modify the physiological state of recipient cells by transferring biological material. Herein, we investigated the effect of EVs isolated from stimulated human dermal fibroblasts (DFs) on DPC activation and HF growth.

View Article and Find Full Text PDF

Human skin constructs (HSCs) have the potential to provide an effective therapy for patients with significant skin injuries and to enable human-relevant drug screening for skin diseases; however, the incorporation of engineered skin appendages, such as hair follicles (HFs), into HSCs remains a major challenge. Here, we demonstrate a biomimetic approach for generation of human HFs within HSCs by recapitulating the physiological 3D organization of cells in the HF microenvironment using 3D-printed molds. Overexpression of Lef-1 in dermal papilla cells (DPC) restores the intact DPC transcriptional signature and significantly enhances the efficiency of HF differentiation in HSCs.

View Article and Find Full Text PDF

In the hair follicle, the dermal papilla (DP) and dermal sheath (DS) support and maintain proliferation and differentiation of the epithelial stem cells that produce the hair fibre. In view of their regulatory properties, in this study, we investigated the interaction between hair follicle dermal cells (DP and DS) and embryonic stem cells (ESCs); induced pluripotent stem cells (iPSCs); and haematopoietic stem cells. We found that coculture of follicular dermal cells with ESCs or iPSCs supported their prolonged maintenance in an apparently undifferentiated state as established by differentiation assays, immunocytochemistry, and RT-PCR for markers of undifferentiated ESCs.

View Article and Find Full Text PDF

Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern.

View Article and Find Full Text PDF

Peptoids are a promising class of antimicrobial agents with reported activities against a range of both Gram-positive and Gram-negative bacteria, fungi and most recently parasites. However, at present the available toxicity data is somewhat limited and as such rationally designing effective antimicrobial peptoids can be challenging. Herein, we present the toxicity profiling of a series of linear peptoids against mammalian cell lines (HaCaT and HepG2).

View Article and Find Full Text PDF

Background: The method of generating bioengineered skin constructs was pioneered several decades ago; nowadays these constructs are used regularly for the treatment of severe burns and nonhealing wounds. Commonly, these constructs are comprised of skin fibroblasts within a collagen scaffold, forming the skin dermis, and stratified keratinocytes overlying this, forming the skin epidermis. In the past decade there has been a surge of interest in bioengineered skins, with researchers seeking alternative cell sources, or scaffolds, from which constructs can be established, and for more biomimetic equivalents with skin appendages.

View Article and Find Full Text PDF

Dermal cell populations are markedly heterogeneous, and they have the capacity to differentiate into dynamic and complex dermal cell compartments. However, the regulatory processes that govern the establishment of each dermal subset remain unknown. Mastrogiannaki et al.

View Article and Find Full Text PDF

During development, multipotent progenitor cells establish lineage-specific programmers of gene activation and silencing underlying their differentiation into specialized cell types. We show that the Polycomb component Cbx4 serves as a critical determinant that maintains the epithelial identity in the developing epidermis by repressing nonepidermal gene expression programs. Cbx4 ablation in mice results in a marked decrease of the epidermal thickness and keratinocyte (KC) proliferation associated with activation of numerous neuronal genes and genes encoding cyclin-dependent kinase inhibitors (p16/p19 and p57).

View Article and Find Full Text PDF

Recent literature suggests that the layer of adipocytes embedded in the skin below the dermis is far from being an inert spacer material. Instead, this layer of dermal white adipose tissue (dWAT) is a regulated lipid layer that comprises a crucial environmental defense. Among all the classes of biological molecules, lipids have the lowest thermal conductance and highest insulation potential.

View Article and Find Full Text PDF

Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation.

View Article and Find Full Text PDF

Here, we explore the evolution and development of skin-associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid-filled cells with the skin is found in many invertebrate and vertebrate species.

View Article and Find Full Text PDF

Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds.

View Article and Find Full Text PDF

De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture.

View Article and Find Full Text PDF

The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle.

View Article and Find Full Text PDF

Traditional skin grafting techniques are effective but limited methods of skin replacement. Autologous transplantation of rapidly cultured keratinocytes is successful for epidermal regeneration, but the current gold-standard technique requires mouse fibroblast feeders and serum-rich media, with serum-free systems and dermal fibroblast (DF) feeders performing relatively poorly. Here, we investigated the capacity of human hair follicle dermal cells to act as alternative supports for keratinocyte growth.

View Article and Find Full Text PDF

The isolation of hair follicle dermal papilla cells has become an important technique in the field of cutaneous stem cell biology. These cells can be used for a number of biological and translational purposes. They are studied to identify the cellular characteristics and molecular factors that underpin the initiation, maintenance, and modulation of hair growth; to develop new human hair replacement techniques; and as a source of cells capable of being directed down a variety of different lineages.

View Article and Find Full Text PDF

Human multipotent skin derived precursor cells (SKPs) are traditionally sourced from dissociated dermal tissues; therefore, donor availability may become limiting. Here we demonstrate that both normal and diseased adult human dermal fibroblasts (DF) pre-cultured in conventional monolayers are capable of forming SKPs (termed m-SKPs). Moreover, we show that these m-SKPs can be passaged and that cryopreservation of original fibroblast monolayer cultures does not reduce m-SKP yield; however, extensive monolayer passaging does.

View Article and Find Full Text PDF

In this study, we have demonstrated that cells of neural crest origin located in the dermal papilla (DP) exhibit endothelial marker expression and a functional activity. When grown in endothelial growth media, DP primary cultures upregulate expression of vascular endothelial growth factor receptor 1 (FLT1) mRNA and downregulate expression of the dermal stem cell marker α-smooth muscle actin. DP cells have demonstrated functional characteristics of endothelial cells, including the ability to form capillary-like structures on Matrigel, increase uptake of low-density lipoprotein and upregulate ICAM1 (CD54) in response to tumour necrosis factor alpha (TNF-α) stimulation.

View Article and Find Full Text PDF

The underlying mechanism of immune privilege in hair follicle cell dermal papilla (DP) and sheath (DS) populations is not well understood, and the responsiveness of hair follicle dermal cells to pro-inflammatory challenge presently remains unknown. In this work, we describe acute NF-κB activation in human DS, DP and dermal fibroblast (DF) cells challenged with TNF-alpha and IL1-beta. In contrast, the DS and DP cells revealed an unexpected tolerance to bacterial LPS challenge relative to DF cells.

View Article and Find Full Text PDF

A recent series of papers, including Festa et al. (2011) in this issue, has revealed unexpected interdependent relationships among cell populations residing in and around the hair follicle. These interactions between different lineages of stem cells are crucial for hair follicle growth and cycling and point to a complex crosstalk in stem cell niches.

View Article and Find Full Text PDF

Exogen is the process by which the hair follicle actively sheds its club fiber from the follicle. However, little is known about signals that govern the cellular mechanisms of shedding. Here, we have identified factors that are important in regulating either the retention or release of the hair club fiber from its epithelial silo within the follicle.

View Article and Find Full Text PDF

Alopecia areata (AA) is among the most highly prevalent human autoimmune diseases, leading to disfiguring hair loss due to the collapse of immune privilege of the hair follicle and subsequent autoimmune attack. The genetic basis of AA is largely unknown. We undertook a genome-wide association study (GWAS) in a sample of 1,054 cases and 3,278 controls and identified 139 single nucleotide polymorphisms that are significantly associated with AA (P View Article and Find Full Text PDF