A reliable, calibrated, non-invasive thermometry method is essential for thermal therapies to monitor and control the treatment. Ultrasound (US) is an effective thermometry modality due to its relatively high sensitivity to temperature changes, and fast data acquisition and processing capabilities.In this work, the change in backscattered energy (CBE) was used to control the tissue temperature non-invasively using a real-time proportional-integral-derivative (PID) controller.
View Article and Find Full Text PDFBackground: Noninvasive therapies such as focused ultrasound were developed to be used for cancer therapies, vessel bleeding, and drug delivery. The main purpose of focused ultrasound therapy is to affect regions of interest (ROI) of tissues without any injuries to surrounding tissues. In this regard, an appropriate monitoring method is required to control the treatment.
View Article and Find Full Text PDFTo establish a methodology for understanding how ultrasound (US) induces drug release from nano-sized drug-delivery systems (NSDDSs) and enhances drug penetration and uptake in tumors. This aims to advance cancer treatment strategies. We developed a multi-physics mathematical model to elucidate and understand the intricate mechanisms governing drug release, transport and delivery.
View Article and Find Full Text PDFIn the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium.
View Article and Find Full Text PDFTherapeutic ultrasound can be used to trigger the on-demand release of chemotherapeutic drugs from gold nanoparticles (GNPs). In the previous work, our group achieved doxorubicin (DOX) release from the surface of GNPS under low-intensity pulsed ultrasound (LIPUS) exposure. However, the specific release kinetics of ultrasound-triggered DOX release from GNPs is not known.
View Article and Find Full Text PDFControlled, localized, and timely activation of nanosized drug delivery systems (NSDDSs), using an external stimulus such as therapeutic ultrasound (TUS), can improve the efficacy of cancer treatments compared to either conventional chemotherapy methods or passive NSDDSs alone. Specifically, TUS induces thermal and mechanical effects that trigger drug release from NSDDSs and overcomes drug delivery barriers in tumor microenvironments to allow nanoparticle drug carriers to penetrate more deeply into tumor tissue while minimizing side effects. This review highlights recent advancements, contemplates future prospects, and addresses challenges in using TUS-mediated NSDDSs for cancer treatment, encompassing preclinical and clinical applications.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2024
Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous.
View Article and Find Full Text PDFPurpose: Decorrelated Compounding (DC) for synthetic aperture ultrasound can reduce speckle variation in images, suggesting enhanced detectability of low-contrast targets in tissue including thermal lesions produced by focused ultrasound (FUS). The DC imaging method has primarily been investigated in simulation and in phantom studies. This work investigates the feasibility of the DC method in monitoring thermal therapy via image guidance and non-invasive thermometry based on the change in backscattered energy (CBE).
View Article and Find Full Text PDFFocused Ultrasound (FUS)-triggered nano-sized drug delivery, as a smart stimuli-responsive system for treating solid tumors, is computationally investigated to enhance localized delivery of drug and treatment efficacy. Integration of thermosensitive liposome (TSL), as a doxorubicin (DOX)-loaded nanocarrier, and FUS, provides a promising drug delivery system. A fully coupled partial differential system of equations, including the Helmholtz equation for FUS propagation, bio-heat transfer, interstitial fluid flow, drug transport in tissue and cellular spaces, and a pharmacodynamic model is first presented for this treatment approach.
View Article and Find Full Text PDFObjective: The primary objective of this study was to quantify the contributions to drug release for thermal and non-thermal mechanisms in ultrasound-induced release from gold nanoparticles (GNPs) for the first time.
Methods: We studied doxorubicin (DOX) and curcumin release from the surface of GNPs using two different methods to induce drug release in an ex vivo tissue model: (i) localized tissue heating with a water bath and (ii) low-intensity pulsed ultrasound (LIPUS) exposure. Both methods have similar temperature profiles and can induce the release of both hydrophobic (curcumin) and hydrophilic (DOX) drugs from the surface of GNPs.
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs.
View Article and Find Full Text PDFCurrently, no numerical model for low-intensity pulsed ultrasound (LIPUS)-triggered anticancer drug release from gold nanoparticle (GNP) drug carriers exists in the literature. In this work, LIPUS-induced doxorubicin (DOX) release from GNPs was achieved in an ex vivo tissue model. Transmission electronic microscopy (TEM) imaging was performed before and after LIPUS exposure, and significant aggregation of the GNPs was observed upon DOX release.
View Article and Find Full Text PDFFrequency compounding is an ultrasound imaging technique used to improve signal-to-noise ratio (SNR). In this work, a nonlinear frequency compounding (NLFC) method was introduced, and its application in noninvasive tissue thermometry investigated. The NLFC method was used to produce two-dimensional maps of the temperature sensitive change in backscattered energy of acoustic harmonics (hCBE), during heating of ex vivo porcine tissue with a low intensity focused ultrasound transducer.
View Article and Find Full Text PDFNonlinear propagation has been demonstrated to have a significant impact on ultrasound imaging. An efficient computational algorithm is presented to simulate nonlinear ultrasound propagation through layered liquid and tissue-equivalent media. Results are compared with hydrophone measurements.
View Article and Find Full Text PDFA computationally efficient model capable of simulating finite-amplitude ultrasound beam propagation in water and in tissue from phased linear arrays and other transducers of arbitrary quasiplanar geometry is described. It is based on a second-order operator splitting approach [Tavakkoli et al., J.
View Article and Find Full Text PDFPurpose: High intensity focused ultrasound has been performed for transrectal and extracorporeal thermal ablation of tissues. We developed and tested a laparoscopic probe that allows real-time ultrasound imaging during partial renal ablation using high intensity focused ultrasound.
Methods: A Sonablate 200 (Focus Surgery, Indianapolis, Indiana) high intensity focused ultrasound system with a modified 18 mm.
IEEE Trans Ultrason Ferroelectr Freq Control
June 2002
Diffractionless solutions of the wave equation in the form of X-waves have previously been obtained based on the inviscid form of the wave equation. A new general solution to the cylindrically symmetric wave equation for a medium with classical viscous losses is obtained. Particular solutions called dissipative Arcsin X-waves have been derived from this general solution.
View Article and Find Full Text PDF