Technical limitations have prevented understanding of how growth factor signals are encoded in distinct activity patterns of the phosphoinositide 3-kinase (PI3K)/AKT pathway, and how this is altered by oncogenic pathway mutations. We introduce a kinetic, single-cell framework for precise calculations of PI3K-specific information transfer for different growth factors. This features live-cell imaging of PI3K/AKT activity reporters and multiplexed CyTOF measurements of PI3K/AKT and RAS/ERK signaling markers over time.
View Article and Find Full Text PDFPatient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method.
View Article and Find Full Text PDFWe recently described a low-affinity second-generation CD19 chimeric antigen receptor (CAR) CAT that showed enhanced expansion, cytotoxicity, and antitumor efficacy compared with the high-affinity (FMC63-based) CAR used in tisagenlecleucel, in preclinical models. Furthermore, CAT demonstrated an excellent toxicity profile, enhanced in vivo expansion, and long-term persistence in a phase 1 clinical study. To understand the molecular mechanisms behind these properties of CAT CAR T cells, we performed a systematic in vitro characterization of the transcriptomic (RNA sequencing) and protein (cytometry by time of flight) changes occurring in T cells expressing low-affinity vs high-affinity CD19 CARs following stimulation with CD19-expressing cells.
View Article and Find Full Text PDFHere, we present a comprehensive protocol for the generation and functional characterization of chimeric antigen receptor (CAR) T cells and their products by mass cytometry in a reproducible and scalable manner. We describe the production of CAR T cells from human peripheral blood mononuclear cells. We then detail a three-step staining protocol with metal-labeled antibodies and the subsequent mass cytometry analysis.
View Article and Find Full Text PDFOrganoids are biomimetic tissue models comprising multiple cell types and cell states. Post-translational modification (PTM) signaling networks control cellular phenotypes and are frequently dysregulated in diseases such as cancer. Although signaling networks vary across cell types, there are limited techniques to study cell type-specific PTMs in heterocellular organoids.
View Article and Find Full Text PDFThe process of metastasis is complex. In breast cancer, there are frequently long time intervals between cells leaving the primary tumour and growth of overt metastases. Reasons for disease indolence and subsequent transition back to aggressive growth include interactions with myeloid and fibroblastic cells in the tumour microenvironment and ongoing immune surveillance.
View Article and Find Full Text PDFDespite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes.
View Article and Find Full Text PDF