Background: Repeat Gamma Knife stereotactic radiosurgery (GKSR) procedures are becoming common, especially for brain metastases. It is important to identify tumors requiring treatment at repeat GKSR and it can be challenging to distinguish treated tumors, tumor progression and new tumors. Using the image co-registration tool within the Leksell Gamma Plan software, we developed a technique to aid in the identification of tumors needing treatment.
View Article and Find Full Text PDFPurpose: The purpose of this study was to evaluate the dosimetric characteristics of each sector of the Leksell Gamma Knife Perfexion (LGK PFX) and to develop tests that can be done for the routine quality assurance checks of the sectors of the LGK PFX.
Methods: The following tests were performed to evaluate the dosimetric characteristics of the sectors: (1) Flash-radiation dose for the 16 mm collimator, (2) transit-radiation dose for the 8 and 4 mm collimators, (3) sector leakage within the radiation cavity and, (4) sector output uniformity. In these tests, the Elekta ABS phantom was used.
Purpose: Traditionally, the dose-rate calibration (output) of the Leksell Gamma Knife (LGK) unit is performed using a 160 mm diameter plastic spherical phantom provided by the vendor of the LGK, Elekta Instrument AB. The purpose of this study was to evaluate variations in the Elekta spherical phantom and to assess its impact and use for the LGK calibration.
Methods: Altogether, 13 phantoms from six different centers were acquired, 10 of these phantoms were manufactured within the past 10 years and the last 3 approximately 15-20 years ago.
Object: Stereotactic radiosurgery (SRS) is an important management option for patients with small- and medium-sized vestibular schwannomas. To assess the potential role of SRS in larger tumors, the authors reviewed their recent experience.
Methods: Between 1994 and 2008, 65 patients with vestibular schwannomas between 3 and 4 cm in one extracanalicular maximum diameter (median tumor volume 9 ml) underwent Gamma Knife surgery.
A new model of Leksell Gamma Knife(R) (LGK), known as Perfexion (LGK PFX), was introduced by Elekta Instrument, AB, Sweden, in 2006. This model has a radically different design from the earlier models U, B, C and 4C. Dosimetric characteristics of LGK PFX, technical differences between LGK PFX and LGK 4C, experience gained with acceptance testing and commissioning of the LGK PFX, and comparison between LGK PFX and LGK 4C are presented in this study.
View Article and Find Full Text PDFThree types of films, Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55, were used to measure relative output factors of 4 and 8 mm collimators of the Leksell Gamma Knife Perfexion. The optical density to dose calibration curve for each of the film types was obtained by exposing the films to a range of known doses. Ten data points were acquired for each of the calibration curves in the dose ranges from 0 to 4 Gy, 0 to 8 Gy, and 0 to 80 Gy for Kodak EDR2, Gafchromic EBT, and Gafchromic MD-V2-55 films, respectively.
View Article and Find Full Text PDFThe calibration of Leksell Gamma Knife Perfexion (LGK PFX) is performed using a spherical polystyrene phantom 160 mm in diameter, which is provided by the manufacturer. This is the same phantom that has been used with LGK models U, B, C, and 4C. The polystyrene phantom is held in irradiation position by an aluminum adaptor, which has stainless steel side-fixation screws.
View Article and Find Full Text PDFObject: The recently introduced Leksell Gamma Knife (LGK) Perfexion is an entirely new system with a different beam geometry compared with the LGK 4C. The new Perfexion system has 192 cobalt-60 sources that are fixed on 8 sectors (each sector has 24 sources). Each sector can be moved independently of the others and can be set to 1 of 5 different positions: 3 positions defining collimator sizes of 4, 8, and 16 mm; an off position (sources are blocked); and a home position.
View Article and Find Full Text PDF