Publications by authors named "Jagdish C Joshi"

Unlabelled: Neutrophils (PMNs) reside as a marginated pool within the vasculature, ready for deployment during infection. However, how endothelial cells (ECs) control PMN extravasation and activation to strengthen tissue homeostasis remains ill-defined. Here, we found that the vascular ETS-related gene (ERG) is a generalized mechanism regulating PMN activity in preclinical tissue injury models and human patients.

View Article and Find Full Text PDF

Vascular endothelial cadherin (VE-cadherin) expressed at endothelial adherens junctions (AJs) is vital for vascular integrity and endothelial homeostasis. Here we identify the requirement of the ubiquitin E3-ligase CHFR as a key mechanism of ubiquitylation-dependent degradation of VE-cadherin. CHFR was essential for disrupting the endothelium through control of the VE-cadherin protein expression at AJs.

View Article and Find Full Text PDF

Unlabelled: IFNγ, a type II interferon secreted by immune cells, augments tissue responses to injury following pathogenic infections leading to lethal acute lung injury (ALI). Alveolar macrophages (AM) abundantly express Toll-like receptor-4 and represent the primary cell type of the innate immune system in the lungs. A fundamental question remains whether AM generation of IFNg leads to uncontrolled innate response and perpetuated lung injury.

View Article and Find Full Text PDF

Background: Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA.

Methods: We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF

Efficient phagocytosis of pathogens by the innate immune system during infectious injury is vital for restoring tissue integrity. Impaired phagocytosis, such as in the case of infection with , a broad-spectrum antibiotic-resistant Gram-negative bacterium, can lead to a life threatening lung disorder, acute lung injury (ALI). Evidence indicates that loss of protease-activated receptor 2 (PAR2) impaired clearance leading to non-resolvable ALI, but the mechanism remains unclear.

View Article and Find Full Text PDF

Cyclic GMP-AMP synthase (cGAS) is a predominant and ubiquitously expressed cytosolic onfirmedDNA sensor that activates innate immune responses by producing a second messenger, cyclic GMP-AMP (cGAMP), and the stimulator of interferon genes (STING). cGAS contains a highly disordered N-terminus, which can sense genomic/chromatin DNA, while the C terminal of cGAS binds dsDNA liberated from various sources, including mitochondria, pathogens, and dead cells. Furthermore, cGAS cellular localization dictates its response to foreign versus self-DNA.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-secreted particles with broad potential to treat tissue injuries by delivering cargo to program target cells. However, improving the yield of functional EVs on a per cell basis remains challenging due to an incomplete understanding of how microenvironmental cues regulate EV secretion at the nanoscale. We show that mesenchymal stromal cells (MSCs) seeded on engineered hydrogels that mimic the elasticity of soft tissues with a lower integrin ligand density secrete ∼10-fold more EVs per cell than MSCs seeded on a rigid plastic substrate, without compromising their therapeutic activity or cargo to resolve acute lung injury in mice.

View Article and Find Full Text PDF

Increased lung vascular permeability and neutrophilic inflammation are hallmarks of acute lung injury. Alveolar macrophages (AMϕ), the predominant sentinel cell type in the airspace, die in massive numbers while fending off pathogens. Recent studies indicate that the AMϕ pool is replenished by airspace-recruited monocytes, but the mechanisms instructing the conversion of recruited monocytes into reparative AMϕ remain elusive.

View Article and Find Full Text PDF

Objective: Isoproterenol (ISO) is widely used agent to study the effects of interventions which could prevent or attenuate the development of myocardial infarction. The sequence of pathological event's revealed that increased myocardial tissue oxygen demand and energy dysregulation exist early during Iso-induced cardiac toxicity. Later, tissue hypoxia results in increased oxidative stress, inflammation and fibrosis along with cardiac dysfunction in this model.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is the major cause of mortality among hospitalized acute lung injury (ALI) patients. Lung macrophages play an important role in maintaining the tissue-fluid homeostasis following injury. We recently showed that circulating monocytes recruited into the alveolar space suppressed the stimulator of type 1 interferon genes (STING) signaling in alveolar macrophages through sphingosine-1-phosphate (S1P).

View Article and Find Full Text PDF

Renal injury might originate from multiple factors like ischemia reperfusion (I/R), drug toxicity, cystic fibrosis, radio contrast agent etc. The four adenosine receptor subtypes have been identified and found to show diverse physiological and pathological roles in kidney diseases. The activation of A adenosine receptor (A) protects against acute kidney injury by improving renal hemodynamic alterations, decreasing tubular necrosis and its inhibition might facilitate removal of toxin or drug metabolite in chronic kidney disease models.

View Article and Find Full Text PDF

Macrophages play a central role in dictating the tissue response to infection and orchestrating subsequent repair of the damage. In this context, macrophages residing in the lungs continuously sense and discriminate among a wide range of insults to initiate the immune responses important to host-defense. Inflammatory tissue injury also leads to activation of proteases, and thereby the coagulation pathway, to optimize injury and repair post-infection.

View Article and Find Full Text PDF

Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a lethal inflammatory lung disorder whose incidence is on the rise. Alveolar macrophages normally act to resolve inflammation, but when dysregulated they can provoke ALI. We demonstrate that monocyte-derived macrophages (CD11b macrophages) recruited into the airspace upregulate the anti-inflammatory function of alveolar macrophages by suppressing their stimulator of type 1 interferon gene (STING) signaling.

View Article and Find Full Text PDF

Alveolar macrophages (AMs), upon sensing pathogens, trigger host defense by activating toll-like receptor 4 (TLR4), but the counterbalancing mechanisms that deactivate AM inflammatory signaling and prevent lethal edema, the hallmark of acute lung injury (ALI), remain unknown. Here, we demonstrate the essential role of AM protease-activating receptor 2 (PAR2) in rapidly suppressing inflammation to prevent long-lasting injury. We show that thrombin, released during TLR4-induced lung injury, directly activates PAR2 to generate cAMP, which abolishes Ca entry through the TRPV4 channel.

View Article and Find Full Text PDF

Background And Objective: Nanoparticles have special properties, such as higher surface-to-volume ratio and higher reactivity, which increases cell penetrability and enhance their applicability in the field of medicine, especially in the case where other drugs are ineffective. Calcium phosphate nanoparticles (CPNP) and their encapsulation with therapeutic and/or diagnostic agents is such an agent synthesized. However, there are concerns related to the colloidal stability of these nanoparticles, which are reflected in their tendency to form aggregates in the physiological milieu.

View Article and Find Full Text PDF

Stress and stress related disorders are a major cause of morbidity and mortality and understanding stress mechanisms is of great importance for devising appropriate therapeutic measures in such situations. The brain and its complex neurotransmitter systems regulate physiological and behavioral responses to a variety of stressors. Several other factors like age, gender and emotionality of the organism, as well as type, intensity and duration of the stressor may decide the nature and extent of stress effects.

View Article and Find Full Text PDF

The present study evaluated the effects of morphine on acute and chronic restraint stress (RS) induced anxiety modulation and the possible involvement of nitric oxide (NO) and heat shock proteins (Hsp70) during such effects. Acute RS (×1) induced anxiogenesis in the elevated plus maze (EPM) test which was associated with lowered brain NO metabolites (NOx) and elevated Hsp70 levels. Pretreatment with morphine (1 and 5 mg/kg) and L-arginine (500 mg/kg) attenuated the RS effects on EPM activity and brain NOx, whereas, Hsp70 levels were further augmented.

View Article and Find Full Text PDF

The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression.

View Article and Find Full Text PDF