Publications by authors named "Jagath Rajapakse"

Apprehension of drug action mechanism is paramount for drug response prediction and precision medicine. The unprecedented development of machine learning and deep learning algorithms has expedited the drug response prediction research. However, existing methods mainly focus on forward encoding of drugs, which is to obtain an accurate prediction of the response levels, but omitted to decipher the reaction mechanism between drug molecules and genes.

View Article and Find Full Text PDF

Background: Microscopy of regenerated tissue shows different morphologies between the healing of acute wounds and chronic wounds. This difference can be seen manually by biologists, but computational methods are needed to automate the characterization of morphology and regenerative quality in regenerated muscle tissue.

Results: From the detected edge segments, we computed several imaging biomarkers of interest, such as median tortuosity, number of edge segments normalized by area, median edge segment distance and interquartile range of orientation angles of edge segments of the microscope images of successful and unsuccessful muscle regeneration.

View Article and Find Full Text PDF

Objective: Vision transformers (ViTs) have shown promising performance in various classification tasks previously dominated by convolutional neural networks (CNNs). However, the performance of ViTs in referable diabetic retinopathy (DR) detection is relatively underexplored. In this study, using retinal photographs, we evaluated the comparative performances of ViTs and CNNs on detection of referable DR.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common congenital disability affecting healthy development and growth, even resulting in pregnancy termination or fetal death. Recently, deep learning techniques have made remarkable progress to assist in diagnosing CHD. One very popular method is directly classifying fetal ultrasound images, recognized as abnormal and normal, which tends to focus more on global features and neglects semantic knowledge of anatomical structures.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are using deep learning to classify brain states from neuroimaging data, which is challenging due to the high dimensionality and limited samples available.
  • The study introduces a sparse feedforward deep neural network that efficiently encodes and decodes brain structures related to Alzheimer's and Parkinson's diseases, reducing the number of parameters and training time.
  • Additionally, a recursive feature elimination algorithm is implemented to enhance accuracy and identify important biomarkers, leading to improved classification accuracy while eliminating around 90-95% of irrelevant features.
View Article and Find Full Text PDF

Discovering hit molecules with desired biological activity in a directed manner is a promising but profound task in computer-aided drug discovery. Inspired by recent generative AI approaches, particularly Diffusion Models (DM), we propose Graph Latent Diffusion Model (GLDM)-a latent DM that preserves both the effectiveness of autoencoders of compressing complex chemical data and the DM's capabilities of generating novel molecules. Specifically, we first develop an autoencoder to encode the molecular data into low-dimensional latent representations and then train the DM on the latent space to generate molecules inducing targeted biological activity defined by gene expression profiles.

View Article and Find Full Text PDF

A hybrid UNet and Transformer (HUT) network is introduced to combine the merits of the UNet and Transformer architectures, improving brain lesion segmentation from MRI and CT scans. The HUT overcomes the limitations of conventional approaches by utilizing two parallel stages: one based on UNet and the other on Transformers. The Transformer-based stage captures global dependencies and long-range correlations.

View Article and Find Full Text PDF

A supervised deep learning network like the UNet has performed well in segmenting brain anomalies such as lesions and tumours. However, such methods were proposed to perform on single-modality or multi-modality images. We use the Hybrid UNet Transformer (HUT) to improve performance in single-modality lesion segmentation and multi-modality brain tumour segmentation.

View Article and Find Full Text PDF

Schizophrenia is a highly heterogeneous disorder and salient functional connectivity (FC) features have been observed to vary across study sites, warranting the need for methods that can differentiate between site-invariant FC biomarkers and site-specific salient FC features. We propose a technique named Semi-supervised learning with data HaRmonisation via Encoder-Decoder-classifier (SHRED) to examine these features from resting state functional magnetic resonance imaging scans gathered from four sites. Our approach involves an encoder-decoder-classifier architecture that simultaneously performs data harmonisation and semi-supervised learning (SSL) to deal with site differences and labelling inconsistencies across sites respectively.

View Article and Find Full Text PDF

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis.

View Article and Find Full Text PDF

With the development of biotechnology, a large amount of multi-omics data have been collected for precision medicine. There exists multiple graph-based prior biological knowledge about omics data, such as gene-gene interaction networks. Recently, there has been an increasing interest in introducing graph neural networks (GNNs) into multi-omics learning.

View Article and Find Full Text PDF

Background: Cancers are genetically heterogeneous, so anticancer drugs show varying degrees of effectiveness on patients due to their differing genetic profiles. Knowing patient's responses to numerous cancer drugs are needed for personalized treatment for cancer. By using molecular profiles of cancer cell lines available from Cancer Cell Line Encyclopedia (CCLE) and anticancer drug responses available in the Genomics of Drug Sensitivity in Cancer (GDSC), we will build computational models to predict anticancer drug responses from molecular features.

View Article and Find Full Text PDF

Motivation: While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem.

View Article and Find Full Text PDF

Multi-omics data are increasingly being gathered for investigations of complex diseases such as cancer. However, high dimensionality, small sample size, and heterogeneity of different omics types pose huge challenges to integrated analysis. In this paper, we evaluate two network-based approaches for integration of multi-omics data in an application of clinical outcome prediction of neuroblastoma.

View Article and Find Full Text PDF

Both neuroimaging and genomics datasets are often gathered for the detection of neurodegenerative diseases. Huge dimensionalities of neuroimaging data as well as omics data pose tremendous challenge for methods integrating multiple modalities. There are few existing solutions that can combine both multi-modal imaging and multi-omics datasets to derive neurological insights.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is used to capture complex and dynamic interactions between brain regions while performing tasks. Task related alterations in the brain have been classified as task specific and task general, depending on whether they are particular to a task or common across multiple tasks. Using recent attempts in interpreting deep learning models, we propose an approach to determine both task specific and task general architectures of the functional brain.

View Article and Find Full Text PDF

Background: Protein-protein interaction (PPI) prediction is an important task towards the understanding of many bioinformatics functions and applications, such as predicting protein functions, gene-disease associations and disease-drug associations. However, many previous PPI prediction researches do not consider missing and spurious interactions inherent in PPI networks. To address these two issues, we define two corresponding tasks, namely missing PPI prediction and spurious PPI prediction, and propose a method that employs graph embeddings that learn vector representations from constructed Gene Ontology Annotation (GOA) graphs and then use embedded vectors to achieve the two tasks.

View Article and Find Full Text PDF

Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans.

View Article and Find Full Text PDF

Functional modules in the human brain support its drive for specialization whereas brain hubs act as focal points for information integration. Brain hubs are brain regions that have a large number of both within and between module connections. We argue that weak connections in brain functional networks lead to misclassification of brain regions as hubs.

View Article and Find Full Text PDF

Background: Module detection algorithms relying on modularity maximization suffer from an inherent resolution limit that hinders detection of small topological modules, especially in molecular networks where most biological processes are believed to form small and compact communities. We propose a novel modular refinement approach that helps finding functionally significant modules of molecular networks.

Results: The module refinement algorithm improves the quality of topological modules in protein-protein interaction networks by finding biologically functionally significant modules.

View Article and Find Full Text PDF

Background: Semantic similarity between Gene Ontology (GO) terms is a fundamental measure for many bioinformatics applications, such as determining functional similarity between genes or proteins. Most previous research exploited information content to estimate the semantic similarity between GO terms; recently some research exploited word embeddings to learn vector representations for GO terms from a large-scale corpus. In this paper, we proposed a novel method, named GO2Vec, that exploits graph embeddings to learn vector representations for GO terms from GO graph.

View Article and Find Full Text PDF

Background: The availability of high-throughput omics datasets from large patient cohorts has allowed the development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence. Such methods are also important to better understand the biological mechanisms underlying disease etiology and development, as well as treatment responses. Recently, different predictive models, relying on distinct algorithms (including Support Vector Machines and Random Forests) have been investigated.

View Article and Find Full Text PDF

Biological entities such as genes, promoters, mRNA, metabolites or proteins do not act alone, but in concert in their network context. Modules, i.e.

View Article and Find Full Text PDF

Background: Systematic fusion of multiple data sources for Gene Regulatory Networks (GRN) inference remains a key challenge in systems biology. We incorporate information from protein-protein interaction networks (PPIN) into the process of GRN inference from gene expression (GE) data. However, existing PPIN remain sparse and transitive protein interactions can help predict missing protein interactions.

View Article and Find Full Text PDF

Background: Functional modules in protein-protein interaction networks (PPIN) are defined by maximal sets of functionally associated proteins and are vital to understanding cellular mechanisms and identifying disease associated proteins. Topological modules of the human proteome have been shown to be related to functional modules of PPIN. However, the effects of the weights of interactions between protein pairs and the integration of physical (direct) interactions with functional (indirect expression-based) interactions have not been investigated in the detection of functional modules of the human proteome.

View Article and Find Full Text PDF