In the field of tissue engineering, 3D scaffolds and cells are often combined to yield constructs that are used as therapeutics to repair or restore tissue function in patients. Viable cells are often required to achieve the intended mechanism of action for the therapy, where the live cells may build new tissue or may release factors that induce tissue regeneration. Thus, there is a need to reliably measure cell viability in 3D scaffolds as a quality attribute of a tissue-engineered medical product.
View Article and Find Full Text PDFCas1 integrase associates with Cas2 to insert short DNA fragments into a CRISPR array, establishing nucleic acid memory in prokaryotes. Here we applied single-molecule FRET methods to the Enterococcus faecalis (Efa) Cas1-Cas2 system to establish a kinetic framework describing target-searching, integration, and post-synapsis events. EfaCas1-Cas2 on its own is not able to find the CRISPR repeat in the CRISPR array; it only does so after prespacer loading.
View Article and Find Full Text PDFG-quadruplex (GQ) stabilizing small molecule (SM) ligands have been used to stabilize human telomeric GQ (hGQ) to inhibit telomerase activity, or non-telomeric GQs to manipulate gene expression at transcription or translation level. GQs are known to inhibit DNA replication unless destabilized by helicases, such as Bloom helicase (BLM). Even though the impact of SM ligands on thermal stability of GQs is commonly used to characterize their efficacy, how these ligands influence helicase-mediated GQ unfolding is not well understood.
View Article and Find Full Text PDFIn this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ.
View Article and Find Full Text PDFRECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes.
View Article and Find Full Text PDFVarious helicases and single stranded DNA (ssDNA) binding proteins unfold G-quadruplex (GQ) structures. However, the underlying mechanisms of this activity have only recently come to focus. We report kinetic studies on Bloom (BLM) helicase and human telomeric GQ interactions using single-molecule Förster resonance energy transfer (smFRET).
View Article and Find Full Text PDFNucleic Acids Res
October 2014
Various helicases and single-stranded DNA (ssDNA) binding proteins are known to destabilize G-quadruplex (GQ) structures, which otherwise result in genomic instability. Bulk biochemical studies have shown that Bloom helicase (BLM) unfolds both intermolecular and intramolecular GQ in the presence of ATP. Using single molecule FRET, we show that binding of RecQ-core of BLM (will be referred to as BLM) to ssDNA in the vicinity of an intramolecular GQ leads to destabilization and unfolding of the GQ in the absence of ATP.
View Article and Find Full Text PDFG-quadruplex (GQ) is a noncanonical nucleic acid structure that is formed by guanine rich sequences. Unless it is destabilized by proteins such as replication protein A (RPA), GQ could interfere with DNA metabolic functions, such as replication or repair. We studied RPA-mediated GQ unfolding using single-molecule FRET on two groups of GQ structures that have different loop lengths and different numbers of G-tetrad layers.
View Article and Find Full Text PDF