Publications by authors named "Jagannathan Mohanraj"

Sol-gel bioactive glass with nanocrystalline structures has demonstrated enhanced bioactivity and acceptance by the surrounding bone tissue. In particular, borate bioactive glasses exhibit higher reactivity and apatite formation under the simulated and conditions. This study presents a microwave-assisted synthesis of borate bioactive glass (58S) and an understanding of its structural and bioactivity.

View Article and Find Full Text PDF

Electrochemical and impedimetric detection of nitrogen-containing organic compounds (NOCs) in blood, urine, sweat, and saliva is widely used in clinical diagnosis. NOC detection is used to identify illnesses such as chronic kidney disease (CKD), end-stage renal disease (ESRD), cardiovascular complications, diabetes, cancer, and others. In recent years, nanomaterials have shown significant potential in the detection of NOCs using electrochemical and impedimetric sensors.

View Article and Find Full Text PDF

Herein, we propose a facile electrochemical sensing platform for urea detection using pencil graphite electrode modified nanocomposites of CuO/ZnO and FeO/ZnO. The detection of urea is essential to monitor for identifying its pollution in the water, at the soil surface and in diagnosing urea cycle disorder related diseases. Therefore, an effective, accurate, cost-effective method of diagnosis is urgently needed.

View Article and Find Full Text PDF

Bioactive coatings on metallic implants promote osseointegration between bone and implant interfaces. A suitable coating enhances the life span of the implant and reduces the requirement of revision surgery. The coating process needs to be optimized such that it does not alter the bioactivity of the material.

View Article and Find Full Text PDF

Stipulation of fresh water for domestic use without any microbial, organic and inorganic contaminants is of high need. Sustainable, efficient, cost-effective and robust water purification technologies is of high need and it can be achieved using nanomaterials and their composite. Nanostructured graphene has unique properties like high surface to volume ratio, higher absorbability, reusability with minimal chemical alterations, and low cytotoxicity.

View Article and Find Full Text PDF

In this work, we have reported on the facile synthesis of white light-emitting carbon quantum dots (CQD) from corncob by hydrothermal method. This CQD has a broad emission from 380 nm to 650 nm with high photoluminescence intensity even after three months of shelf-life and stable at variable pH conditions. The presence of Si and N impurities in the biomass gives a greater advantage in producing white light emission with high quantum yield (54%) and enhanced lifetime at ambient conditions.

View Article and Find Full Text PDF

The removal of halogenated dye and sensing of pharmaceutical products in the water bodies with quick purification time is of high need due to the scarcity of drinking water. The present work reported on the preparation of graphitic carbon nitride (g-CN) for quick time water contaminant adsorption, followed by synthesizing silver nanoparticles decorated graphitic carbon nitride for pharmaceutical product sensing using in-situ SERS technique. The prepared graphitic carbon nitride is used to study the adsorption behavior of water contaminants at room temperature, in the presence of methylene blue (MB) as an adsorbate model.

View Article and Find Full Text PDF