Publications by authors named "Jagadish Kummetha Venkata"

How human FGFR1 localizes to the PM is unknown. Currently, it is assumed that newly synthesized FGFR1 is continuously delivered to the PM. However, evidence indicates that FGFR1 is mostly sequestered in intracellular post-Golgi vesicles (PGVs) under normal conditions.

View Article and Find Full Text PDF

Background: The binding of CXCR4 with its ligand (stromal-derived factor-1) maintains hematopoietic stem/progenitor cells (HSPCs) in a quiescent state. We hypothesized that blocking CXCR4/SDF-1 interaction after hematopoietic stem cell transplantation (HSCT) promotes hematopoiesis by inducing HSC proliferation.

Methods: We conducted a phase I/II trial of plerixafor on hematopoietic cell recovery following myeloablative allogeneic HSCT.

View Article and Find Full Text PDF

Sphingolipid metabolism is being increasingly recognized as a key pathway in regulating cancer cell survival and proliferation. However, very little is known about its role in multiple myeloma (MM). We investigated the potential of targeting sphingosine kinase 2 (SK2) for the treatment of MM.

View Article and Find Full Text PDF

Fatty acid 2-hydroxylase (FA2H) is responsible for the synthesis of myelin galactolipids containing hydroxy fatty acid (hFA) as the N-acyl chain. Mutations in the FA2H gene cause leukodystrophy, spastic paraplegia, and neurodegeneration with brain iron accumulation. Using the Cre-lox system, we developed two types of mouse mutants, Fa2h(-/-) mice (Fa2h deleted in all cells by germline deletion) and Fa2h(flox/flox) Cnp1-Cre mice (Fa2h deleted only in oligodendrocytes and Schwann cells).

View Article and Find Full Text PDF

The cholesterol, sphingolipid, and glycerophospholipid content of total brain, of detergent-resistant membranes prepared from the total brain, and of cerebellar granule cells differentiated in culture from wild type (WT) and acid sphingomyelinase knockout (ASMKO) were studied. Brains derived from 7-month-old ASMKO animals showed a fivefold higher level of sphingomyelin and a significant increase in ganglioside content, mainly because of monosialogangliosides GM3 and GM2 accumulation, while the cholesterol and glycerophospholipid content was unchanged with respect to WT animals. An increase in sphingomyelin, but not in gangliosides, was also detected in cultured cerebellar granule neurons from ASMKO mice, indicating that ganglioside accumulation is not a direct consequence of the enzyme defect.

View Article and Find Full Text PDF