Publications by authors named "Jag Heer"

Article Synopsis
  • - The COVID Moonshot was a collaborative, open-science effort focused on finding a new drug to inhibit the SARS-CoV-2 main protease, which is crucial for the virus's survival.
  • - Researchers developed a novel noncovalent, nonpeptidic inhibitor that stands out from existing drugs targeting the same protease, employing advanced techniques like machine learning and high-throughput structural biology.
  • - Over 18,000 compound designs, 490 ligand-bound x-ray structures, and extensive assay data were generated and shared openly, creating a comprehensive and accessible knowledge base for future drug discovery efforts against coronaviruses.
View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet.

View Article and Find Full Text PDF

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3).

View Article and Find Full Text PDF

Tetrahydropyrazino-annelated theophylline (1,3-dimethylxanthine) derivatives have previously been shown to display increased water-solubility as compared to the parent xanthines due to their basic character. In the present study, we modified this promising scaffold by replacing the 1,3-dimethyl residues by a variety of alkyl groups including combinations of different substituents in both positions. Substituted benzyl or phenethyl residues were attached to the N8 of the resulting 1,3-dialkyl-tetrahydropyrazino[2,1- ]purinediones with the aim to obtain multi-target drugs that block human A and A adenosine receptors (ARs) and monoaminoxidase B (MAO-B).

View Article and Find Full Text PDF

The polyadenosine-diphosphate-ribose polymerase 14 (PARP14) has been implicated in DNA damage response pathways for homologous recombination. PARP14 contains three (ADP ribose binding) macrodomains (MD) whose exact contribution to overall PARP14 function in pathology remains unclear. A medium throughput screen led to the identification of N-(2(-9H-carbazol-1-yl)phenyl)acetamide (GeA-69, 1) as a novel allosteric PARP14 MD2 (second MD of PARP14) inhibitor.

View Article and Find Full Text PDF

Tackling PPIs, particularly by stabilizing clinically favored conformations of target proteins, with orally available, bona fide small molecules remains a significant but immensely worthwhile challenge for the pharmaceutical industry. Success may be more likely through the application of nature's learnings to build intrinsic rigidity into the design of clinical candidates.

View Article and Find Full Text PDF

The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form.

View Article and Find Full Text PDF

Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

The efficacy of the recently approved drug fingolimod (FTY720) in multiple sclerosis patients results from the action of its phosphate metabolite on sphingosine-1-phosphate S1P1 receptors, while a variety of side effects have been ascribed to its S1P3 receptor activity. Although S1P and phospho-fingolimod share the same structural elements of a zwitterionic headgroup and lipophilic tail, a variety of chemotypes have been found to show S1P1 receptor agonism. Here we describe a study of the tolerance of the S1P1 and S1P3 receptors toward bicyclic heterocycles of systematically varied shape and connectivity incorporating acidic, basic, or zwitterionic headgroups.

View Article and Find Full Text PDF

8-Benzyl-substituted tetrahydropyrazino[2,1-f]purinediones were designed as tricyclic xanthine derivatives containing a basic nitrogen atom in the tetrahydropyrazine ring to improve water solubility. A library of 69 derivatives was prepared and evaluated in radioligand binding studies at adenosine receptor (AR) subtypes and for their ability to inhibit monoamine oxidases (MAO). Potent dual-target-directed A1 /A2A adenosine receptor antagonists were identified.

View Article and Find Full Text PDF

Blockade of A2A adenosine receptors (A2AARs) and inhibition of monoamine oxidase B (MAO-B) in the brain are considered attractive strategies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD). In the present study, benzothiazinones, e.g.

View Article and Find Full Text PDF

During the lead optimization of NK(1)/NK(3) receptor antagonists program, a focused exploration of molecules bearing a lactam moiety was performed. The aim of the investigation was to identify the optimal position of the carbonyl and hydroxy methyl group in the lactam moiety, in order to maximize the in vitro affinity and the level of insurmountable antagonism at both NK(1) and NK(3) receptors. The synthesis and biological evaluation of these novel lactam derivatives, with potent and balanced NK(1)/NK(3) activity, were reported in this paper.

View Article and Find Full Text PDF

For over 30 years, rapamycin has generated a sustained and intense interest from the scientific community as a result of its exceptional pharmacological properties and challenging structural features. In addition to its well known therapeutic value as a potent immunosuppressive agent, rapamycin and its derivatives have recently gained prominence for the treatment of a wide variety of other human malignancies. Herein we disclose full details of our extensive investigation into the synthesis of rapamycin that culminated in a new and convergent preparation featuring a macro-etherification/catechol-templating strategy for construction of the macrocyclic core of this natural product.

View Article and Find Full Text PDF

The novel 7-transmembrane receptor MrgX1 is located predominantly in the dorsal root ganglion and has consequently been implicated in the perception of pain. Here we describe the discovery and optimization of a small molecule agonist and initial docking studies of this ligand into the receptor in order to provide a suitable lead and tool compound for the elucidation of the physiological function of the receptor.

View Article and Find Full Text PDF

A novel oxytocin antagonist was identified by 'scaffold-hopping' using Cresset FieldScreen molecular field similarity searching. A single cycle of optimization driven by an understanding of the key pharmacophoric elements required for activity led to the discovery of a potent, selective and highly ligand-efficient oxytocin receptor antagonist. Selectivity over vasopressin receptors was rationalized based on differences in the structure of the natural ligands.

View Article and Find Full Text PDF

The optimisation of a tertiary sulfonamide high-throughput screening hit is described. A combination of high-throughput chemistry, pharmacophore analysis and in silico PK profiling resulted in the discovery of potent sulfonamide oxytocin receptor antagonists with oral exposure and good selectivity over vasopressin receptors.

View Article and Find Full Text PDF

Non-traumatic abdominal pain is a common presenting complaint in emergency department (ED) patients, quoted in some contemporary literature as being the third most frequent reason for ED visits. We present the ED and hospital course of an unusual case of an 11 year old female with right lower quadrant abdominal pain. The admission assessment of this patient was "possible appendicitis versus gastroenteritis"; however, laparatomy revealed a right adnexal torsion.

View Article and Find Full Text PDF

Screening of our internal compound collection for inhibitors of the transforming growth factor beta1 (TGF-beta1) type I receptor (ALK5) identified several hits. Optimization of the dihydropyrroloimidazole hit 2 by introduction of a 2-pyridine and 3,4-methylenedioxyphenyl group gave 7, a selective ALK5 inhibitor. With this information, optimization of the triarylimidazole hit 8 gave the selective inhibitor 14, which inhibits TGF-beta1-induced fibronectin mRNA formation while displaying no measurable cytotoxicity in the 48 h XTT assay.

View Article and Find Full Text PDF