Publications by authors named "Jaffrezic-Renault N"

Bisphenol A (BPA) is a commonly synthetic chemical mainly used in producing plastic items. It is an endocrine-disrupting compound that causes irreversible health and environmental damage. Developing a simple method for BPA effective quantitative monitoring is emergently necessary.

View Article and Find Full Text PDF
Article Synopsis
  • Tibial fractures are common injuries and require careful monitoring for proper healing, with Osteoprotegerin (OPG) being a crucial marker for this process.
  • A new, highly sensitive electrochemical immunosensor has been developed using a nanocomposite material that enhances detection of OPG in serum, addressing existing methods' limitations in sensitivity and specificity.
  • This immunosensor shows excellent performance in terms of specificity and stability and is validated for clinical use, effectively aiding in the assessment of fracture healing and the evaluation of orthopedic drug efficacy in real patient samples.
View Article and Find Full Text PDF

Human parvovirus B19 is a prevalent childhood infectious virus that poses a great challenge to public health, so the detection of B19V is of great importance. In this study, a DNA sensor based on CbAgo, a Cas effector, and a dual electrochemical signal amplification strategy was developed by using a novel nanocomposite MnO/CMK-3/g-CN/AgNPs for initial signal amplification, with CMK being an ordered mesoporous carbon nanomaterial. Single-walled carbon nanotubes (SWCNTs) were used as electrocatalytic probes for secondary signal amplification to detect B19 DNA.

View Article and Find Full Text PDF

Antimicrobial residues in animal-derived foods have become a major source of concern around the world. Oxytetracycline (OTC), one of these antibiotics that belongs to the tetracycline family should be detected in these matrices. Nanostructured metal oxides have attracted a lot of scientific attention due to their special characteristics that can be exploited for creating innovative nanodevices.

View Article and Find Full Text PDF

CD146, also known as melanoma cell adhesion molecule (MCAM), is overexpressed in various cancer patients, making it a valuable predictor for early diagnosis. In this work, an immune sandwich electrochemical biosensor is proposed for sensitive and non-invasive quantitative detection of CD146 in serum. Zirconium-based MOF (UIO-66) was modified by simultaneous copper atom doping, in situ growth carbon-based support and physical embedding of platinum nanoparticles (PtNPs).

View Article and Find Full Text PDF

We propose a new strategy using a sandwich approach for the detection of two HF biomarkers: tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). For this purpose, magnetic nanoparticles (MNPs) (MNPs@aminodextran) were biofunctionalized with monoclonal antibodies (mAbs) using bis (sulfosuccinimidyl) suberate (BS) as a cross-linker for the pre-concentration of two biomarkers (TNF-α and IL-10). In addition, our ISFETs were biofunctionalized with polyclonal antibodies (pAbs) (TNF-α and IL-10).

View Article and Find Full Text PDF

Procalcitonin (PCT) is a polypeptide produced by the parafollicular cells of the thyroid gland and serves as a vital marker for the diagnosis and treatment of sepsis and other infectious diseases, as well as multiple organ failure, due to its high expression levels in affected patients. This article reports on a highly sensitive electrochemical biosensor based on MOF composite materials, based on Cu-BHT, for detecting PCT levels. The surface of the glassy carbon electrode may have better charge transfer resistance owing to the nano-composite material made of Cu-BHT, chitosan, and AuNPs.

View Article and Find Full Text PDF

Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS).

View Article and Find Full Text PDF

In this paper, a microconductometric sensor has been designed, based on a chitosan composite including alcohol dehydrogenase-and its cofactor-and gold nanoparticles, and was calibrated by differential measurements in the headspace of aqueous solutions of ethanol. The role of gold nanoparticles (GNPs) was crucial in improving the analytical performance of the ethanol sensor in terms of response time, sensitivity, selectivity, and reproducibility. The response time was reduced to 10 s, compared to 21 s without GNPs.

View Article and Find Full Text PDF

We aim to develop an electrochemical sensor for a divalent metal ion (lead II), a highly toxic water contaminant. We explore a sensor formed with a hemicellulose polysaccharide extracted from the Opuntia Ficus Indica cactus associated with agarose as a sensitive layer deposited on a gold electrode. This sensor combines the functional groups of hemicellulose that could form a complex with metal ions and agarose with gelling properties to form a stable membrane.

View Article and Find Full Text PDF

Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery.

View Article and Find Full Text PDF

Methanol (MeOH) is a solvent and cleaning agent used in industry, but it is poisonous when ingested. The recommended release threshold for MeOH vapor is 200 ppm. We present a novel sensitive micro-conductometric MeOH biosensor created by grafting alcohol oxidase (AOX) onto electrospun polystyrene-poly(amidoamine) dendritic polymer blend nanofibers (PS-PAMAM-ESNFs) on interdigitated electrodes (IDEs).

View Article and Find Full Text PDF

Previous researches have suggested the potential correlation between the development of breast cancer and the concentration of miRNA-21 in serum. Theoretically the doping of multivalent metal ions in WS could bring higher electron transfer capacity, but this hasn't been proven. To fill this research gap, through one-pot method we prepared seven nanocomposite structures modified with different metal ions (Co, Ni, Mn, Zn, Fe, Cr, La).

View Article and Find Full Text PDF

Biosensors are devices composed of a biorecognition part and of a transduction part [...

View Article and Find Full Text PDF

To protect consumers from risks related to overexposure to sulfadiazine, total residues of this antibacterial agent in animal-origin foodstuffs not exceed international regulations. To this end, a new electrochemical sensor based on a molecularly imprinted polymer nanocomposite using overoxidized polypyrrole and copper nanoparticles for the detection of sulfadiazine is elaborated. After optimization of the preparation of the electrochemical sensors, their differential pulse voltammetric signal exhibits an excellent stability and reproducibility at 1.

View Article and Find Full Text PDF

Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products.

View Article and Find Full Text PDF

As an antibody-free sensing membrane for the detection of the antibiotic tetracycline (TC), a liquid PVC membrane doped with the ion-pair tetracycline/θ-shaped anion [3,3'-Co(1,2-CBH)] ([-COSAN]) was formulated and deposited on a SWCNT modified gold microelectrode. The chosen transduction technique was electrochemical impedance spectroscopy (EIS). The PVC membrane was composed of: the tetracycline/[-COSAN] ion-pair, a plasticizer.

View Article and Find Full Text PDF

Introduction: Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits.

View Article and Find Full Text PDF

Nanotechnology has ultimately come into the domain of drug delivery. Nanosystems for delivery of drugs are promptly emerging science utilizing different nanoparticles as carriers. Biocompatible and stable nanocarriers are novel diagnosis tools or therapy agents for explicitly targeting locates with controllable way.

View Article and Find Full Text PDF

Assessing cortisol levels in human bodies has become essential to diagnose heart failure (HF). In this work, we propose a salivary cortisol detection strategy as part of an easily integrable lab-on-a-chip for detection of HF biomarkers. Our developed capacitive immunosensor based on hafnium oxide (HfO2)/silicon structure showed good linearity between increasing cortisol concentration and the charge-transfer resistance/capacitance.

View Article and Find Full Text PDF

Lysozyme (LYS) applications encompass anti-bacterial activity, analgesic, and anti-inflammatory effects. In this work, a porous framework that was based on the polymerization of pyrrole (PPy) in the presence of multi-functional graphene oxide/iron oxide composite (GO@FeO) has been developed. Oxygen-containing and amine groups that were present in the nanocomposite were availed to assembly LYS as the molecularly imprinted polymer (MIP) template.

View Article and Find Full Text PDF

MicroRNA-21 (miRNA-21) is a common biomarker with high expression in breast tumors. Therefore, sensitive detection of miRNA-21 is of great significance for clinical breast tumor diagnosis. A TH/rGO/CMK-3/AuNPs nanocomposite is composed of thionine (TH), reduced graphene oxide (rGO), ordered mesoporous carbon (CMK-3), and gold nanoparticles (AuNPs), which help to increase the specific surface area of a glassy carbon electrode (GCE) and to amplify the DPV signal.

View Article and Find Full Text PDF

Achieving the early diagnosis of breast cancer, through ultrasensitive detection of tumor marker miRNA-155, is a significant challenge. Therefore, an ultrasensitive hairpin electrochemical biosensor based on graphite-like phase carbon nitride composite was proposed. In this paper, poly(D-glucosamine) (PDG) was used as a stabilizer and reducing agent to prepare gold nanoparticles at room temperature, and then a graphite-like phase with a two-dimensional lamellar structure carbon nitride was further combined with it to obtain the poly(D-glucosamine)/gold nanoparticles/graphite-like phase carbon nitride nanocomposite (PDG/AuNPs/g-CN), in order to achieve the goal of signal amplification.

View Article and Find Full Text PDF