Lindane is documented by the Environmental Protection Agency (EPA) as one of the most toxic registered pesticides. Conventional detection of lindane in the environment requires manual field sampling and complex, time-consuming analytical sample handling relying on skilled labor. In this study, an electrochemical sensing system based on a modified electrode is reported.
View Article and Find Full Text PDFPesticides are heavily used in agriculture to protect crops from diseases, insects, and weeds. However, only a fraction of the used pesticides reaches the target and the rest slips through the soil, causing the contamination of ground- and surface water resources. Given the emerging interest in the on-site detection of analytes that can replace traditional chromatographic techniques, alternative methods for pesticide measuring have recently encountered remarkable attention.
View Article and Find Full Text PDFBentazone is one of the most problematic pesticides polluting groundwater resources. It is on the list of pesticides that are mandatory to analyze at water work controls. The current pesticide measuring approach includes manual water sampling and time-consuming chromatographical quantification of the bentazone content at centralized laboratories.
View Article and Find Full Text PDFGlyphosate (Gly) is one of the most problematic pesticides that repeatedly appears in drinking water. Continuous on-site detection of Gly in water supplies can provide an early warning in incidents of contamination, before the pesticide reaches the drinking water. Here, we report the first direct detection of Gly in tap water with electrochemical sensing.
View Article and Find Full Text PDFPyocyanin is a toxin produced by Pseudomonas aeruginosa. Here we describe a novel paper-based electrochemical sensor for pyocyanin detection, manufactured with a simple and inexpensive approach based on electrode printing on paper. The resulting sensors constitute an effective electrochemical method to quantify pyocyanin in bacterial cultures without the conventional time consuming pretreatment of the samples.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass-like nanostructure (termed nanograss) were used. A two-chamber MFC with plain silicium electrodes achieved a maximum power density of 0.
View Article and Find Full Text PDF