Some of the difficulties in numerical modeling of wireless communication devices for dosimetric evaluations arise from, e.g. incomplete documentation available for the numerical model, such as missing information on dielectric materials or the antenna matching circuitry.
View Article and Find Full Text PDFPrevious studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study.
View Article and Find Full Text PDFThe aim of this study was to provide the information necessary to enable the comparison of exposure conditions in different human volunteer studies published by the research groups at the Universities of Turku, Swinburne, and Zurich. The latter applied a setup optimized for human volunteer studies in the context of risk assessment while the first two applied a modified commercial mobile phone for which detailed dosimetric data were lacking. While the Zurich Setup exposed the entire cortex of the target hemisphere, the other two setups resulted in only very localized exposure of the upper cheek, and concentrated on a limited area of the middle temporal gyrus just above the ear.
View Article and Find Full Text PDFThe specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol.
View Article and Find Full Text PDFBioelectromagnetics
September 2006
During the last decade, use of radio frequency (RF) applications like mobile phones and other wireless devices, has increased remarkably. This has triggered numerous studies related to possible health risks due to the exposure of RF electromagnetic (EM) fields. One safety aspect is the coupling of EM fields with active and passive implants in the human body.
View Article and Find Full Text PDFNumerous studies have attempted to address the question of the RF energy absorption difference between children and adults using computational methods. They have assumed the same dielectric parameters for child and adult head models in SAR calculations. This has been criticized by many researchers who have stated that child organs are not fully developed, their anatomy is different and also their tissue composition is slightly different with higher water content.
View Article and Find Full Text PDF