Background: Diphenhydramine (DPH) is an antihistamine medication that in overdose can result in anticholinergic symptoms and serious complications, including arrhythmia and coma. We aimed to compare the value of various machine learning (ML) models, including light gradient boosting machine (LGBM), logistic regression (LR), and random forest (RF), in the outcome prediction of DPH poisoning.
Materials And Methods: We used the National Poison Data System database and included all of the human exposures of DPH from January 01, 2017 to December 31, 2017, and excluded those cases with missing information, duplicated cases, and those who reported co-ingestion.
Bupropion is widely used for the treatment of major depressive disorder and for smoking cessation assistance. Unfortunately, there are no practical systems to assist clinicians or poison centres in predicting outcomes based on clinical features. Hence, the purpose of this study was to use a decision tree approach to inform early diagnosis of outcomes secondary to bupropion overdose.
View Article and Find Full Text PDF