Although transmission electron microscopy (TEM) may be one of the most efficient techniques available for studying the morphological characteristics of nanoparticles, analyzing them quantitatively in a statistical manner is exceedingly difficult. Herein, we report a method for mass-throughput analysis of the morphologies of nanoparticles by applying a genetic algorithm to an image analysis technique. The proposed method enables the analysis of over 150,000 nanoparticles with a high precision of 99.
View Article and Find Full Text PDFTo create printing substrates for colorimetric sensor arrays, chemically resistant membranes are prepared by coating cellulose filter paper with perfluoroalkoxy (PFA) polymer nanoparticles. A water-based fluorothermoplastic polymer dispersion was diluted with an organic solvent that causes weak aggregation of polymer nanoparticles. The resulting solution improved adhesion between the polymer and the cellulose membrane, providing a more mechanically stable substrate.
View Article and Find Full Text PDFBackground: Top priorities for tuberculosis control and elimination include a simple, low-cost screening test using sputum and a non-sputum-based test in patients that do not produce sputum. The aim of this study was to evaluate the performance of a colorimetric sensor array (CSA) test, for analysis of volatile organic compounds in urine, in the diagnosis of pulmonary TB.
Material And Methods: Urine samples were collected from individuals suspected of having pulmonary TB in Western Kenya.
Here, we systematically investigated the independent, multiple, and synergic effects of three major components, namely, ascorbic acid (AA), seed, and silver ions (Ag), on the characteristics of gold nanorods (GNRs), i.e., longitudinal localized surface plasmon resonance (LSPR) peak position, shape, size, and monodispersity.
View Article and Find Full Text PDF