Mechanical deformation-induced strain gradients and coupled spontaneous electric polarization field in centrosymmetric materials, known as the flexoelectric effect, can generate ubiquitous mechanoelectrical functionalities, like the flexo-photovoltaic effect. Concurrently, nano/micrometer-scale inhomogeneous strain reengineers the electronic arrangements and in turn, could alter the fundamental limits of optoelectronic performance. Here, the flexoelectric effect-driven self-powered giant short-wavelength infrared (λ ≤ 1800 nm) photoresponse from centrosymmetric bulk silicon, indeed far beyond the fundamental bandgap (λ = 1100 nm) is demonstrated.
View Article and Find Full Text PDFEnvironment-adaptable photonic-electronic-coupled devices can help overcome major challenges related to the extraction of highly specific angular information, such as human visual perception. However, a true implementation of such a device has rarely been investigated thus far. Herein, we provide an approach and demonstrate a proof-of-concept solid-state semiconductor-based highly transparent, optical-electrical-coupled, self-adaptive angular visual perception system that can fulfill the versatile criteria of the human vision system.
View Article and Find Full Text PDF