Publications by authors named "Jaeseon Song"

Research on figure-ground perception has consistently found that red images are more likely to be perceived as figure/nearer, yet the mechanisms behind this are not completely clear. The primary theories have pointed to optical chromatic aberrations or cortical mechanisms, such as the antagonistic interactions of the magno-/parvocellular (M/P) systems. Our study explored this color-biased figure-ground perception by examining the duration for which a region was perceived as figure under both binocular and monocular conditions, using all combinations of red, blue, green, and gray.

View Article and Find Full Text PDF

The pulsed- and steady-pedestal paradigms were designed to track increment thresholds (Δ) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively. These paradigms produce contrasting results: linear relationships between Δ and are observed in the pulsed-pedestal paradigm, indicative of the P system's processing, while the steady-pedestal paradigm reveals nonlinear functions, characteristic of the M system's response. However, we recently found the P model fits better than the M model for both paradigms, using Gabor stimuli biased towards the M or P systems based on their sensitivity to color and spatial frequency.

View Article and Find Full Text PDF

Theoretically, the pulsed- and steady-pedestal paradigms are thought to track contrast-increment thresholds (ΔC) as a function of pedestal contrast (C) for the parvocellular (P) and magnocellular (M) systems, respectively, yielding linear ΔC versus C functions for the pulsed- and nonlinear functions for the steady-pedestal paradigm. A recent study utilizing these paradigms to isolate the P and M systems reported no evidence of the M system being suppressed by red light, contrary to previous physiological and psychophysical findings. Curious as to why this may have occurred, we examined how ΔC varies with C for the P and M systems using the pulsed- and steady-pedestal paradigms and stimuli biased towards the P or M systems based on their sensitivity to spatial frequency (SF) and color.

View Article and Find Full Text PDF