Perception of temperature is an important brain function for organisms to survive. Evidence suggests that temperature preference behavior (TPB) in Drosophila melanogaster, one of poikilothermal animals, is regulated by cAMP-dependent protein kinase (PKA) signaling in mushroom bodies of the brain. However, downstream targets for the PKA signaling in this behavior have not been identified.
View Article and Find Full Text PDFThe Drosophila Gene Disruption Project (GDP) has created a public collection of mutant strains containing single transposon insertions associated with different genes. These strains often disrupt gene function directly, allow production of new alleles, and have many other applications for analyzing gene function. Here we describe the addition of ∼7600 new strains, which were selected from >140,000 additional P or piggyBac element integrations and 12,500 newly generated insertions of the Minos transposon.
View Article and Find Full Text PDFHomoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature.
View Article and Find Full Text PDFMesenchymal stromal cells (MSCs) have gained widespread popularity in cell therapy, but their development into clinical products has been impeded by the scarcity of cell-specific markers. We previously explored transcriptome and membrane proteome of MSCs, from which fibroblast activation protein alpha (FAP) was recognized as a prime surface marker candidate. The present study showed that FAP was constitutively expressed on MSCs, but not on other cells.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK, also known as SNF1A) has been primarily studied as a metabolic regulator that is activated in response to energy deprivation. Although there is relatively ample information on the biochemical characteristics of AMPK, not enough data exist on the in vivo function of the kinase. Here, using the Drosophila model system, we generated the first animal model with no AMPK activity and discovered physiological functions of the kinase.
View Article and Find Full Text PDFSynoviolin, also called HRD1, is an E3 ubiquitin ligase and is implicated in endoplasmic reticulum -associated degradation. In mammals, Synoviolin plays crucial roles in various physiological and pathological processes, including embryogenesis and the pathogenesis of arthropathy. However, little is known about the molecular mechanisms of Synoviolin in these actions.
View Article and Find Full Text PDFHereditary spastic paraplegias (HSPs) are human genetic disorders causing increased stiffness and overactive muscle reflexes in the lower extremities. atlastin (atl) is one of the major genes in which mutations result in HSP. We generated a Drosophila model of HSP that has a null mutation in atl.
View Article and Find Full Text PDFTemperature profoundly influences various life phenomena, and most animals have developed mechanisms to respond properly to environmental temperature fluctuations. To identify genes involved in sensing ambient temperature and in responding to its change, >27,000 independent P-element insertion mutants of Drosophila were screened. As a result, we found that defects in the genes encoding for proteins involved in histamine signaling [histidine decarboxylase (hdc), histamine-gated chloride channel subunit 1 (hisCl1), ora transientless (ort)] cause abnormal temperature preferences.
View Article and Find Full Text PDFAutosomal recessive juvenile parkinsonism (AR-JP) is an early-onset form of Parkinson's disease characterized by motor disturbances and dopaminergic neurodegeneration. To address its underlying molecular pathogenesis, we generated and characterized loss-of-function mutants of Drosophila PTEN-induced putative kinase 1 (PINK1), a novel AR-JP-linked gene. Here, we show that PINK1 mutants exhibit indirect flight muscle and dopaminergic neuronal degeneration accompanied by locomotive defects.
View Article and Find Full Text PDFThe pigment-dispersing factor (PDF) is a neuropeptide controlling circadian behavioral rhythms in Drosophila, but its receptor is not yet known. From a large-scale temperature preference behavior screen in Drosophila, we isolated a P insertion mutant that preferred different temperatures during the day and night. This mutation, which we named han, reduced the transcript level of CG13758.
View Article and Find Full Text PDFSeveral transient receptor potential channels were recently found to be activated by temperature stimuli in vitro. Their physiological and behavioral roles are largely unknown. From a temperature-preference behavior screen of 27,000 Drosophila melanogaster P-insertion mutants, we isolated a gene, named pyrexia (pyx), encoding a new transient receptor potential channel.
View Article and Find Full Text PDFp53 is a representative tumor suppressor whose dysfunction is a major cause of human cancer syndrome. Here we isolated flies lacking Dmp53, which encodes the single Drosophila orthologue of mammalian p53 family. Dmp53 null mutants well developed into adults, only displaying mild defects in longevity and fertility.
View Article and Find Full Text PDF