Publications by authors named "Jaermann T"

The potential signal-to-noise ratio (SNR) gain at ultrahigh field strengths offers the promise of higher image resolution in single-shot diffusion-weighted echo-planar imaging the challenge being reduced T(2) and T(2) * relaxation times and increased B(0) inhomogeneity which lead to geometric distortions and image blurring. These can be addressed using parallel imaging (PI) methods for which a greater range of feasible reduction factors has been predicted at ultrahigh field strengths-the tradeoff being an associated SNR loss. Using comprehensive simulations, the SNR of high-resolution diffusion-weighted echo-planar imaging in combination with spin-echo and stimulated-echo acquisition is explored at 7 T and compared to 3 T.

View Article and Find Full Text PDF

Recently, pulsed magnetic field therapy (PMFT) systems have become available for private use. Although they may be applied without medical supervision, only a little is known about their field quantities. In this study, the spatial distribution and the temporal characteristics of the magnetic flux densities of three PMFT systems, available in Europe, were analysed.

View Article and Find Full Text PDF

Purpose: To construct a temperature-controlled diffusion phantom with known diffusion properties and geometry in order to facilitate the comparison and optimization of diffusion sequences with the objective of increasing the precision of experimentally derived diffusion parameters.

Materials And Methods: A temperature-stabilized diffusion phantom made up of two crossing strands of hydrophobic polyethylene fibers was constructed. Reproducibility and temperature dependence of several diffusion parameters was investigated and compared with computer simulations.

View Article and Find Full Text PDF

Background And Purpose: The inherent low anisotropy of gray matter and the lack of adequate imaging sensitivity and resolution has, so far, impeded depiction of axonal fibers to their intracortical origin or termination. We tested the hypothesis that an experimental approach with high-resolution diffusion tensor imaging (DTI) provides anisotropic data for fiber tractography with sufficient sensitivity to visualize in vivo the fine distribution of white matter bundles at the intracortical level.

Materials And Methods: We conducted phantom measurements of signal-to-noise ratio (SNR) and obtained diffusion tensor maps of the occipital lobe in 6 healthy volunteers using a dedicated miniature phased array detector at 3T.

View Article and Find Full Text PDF

A powerful, non-invasive technique for estimating and visualizing white matter tracts in the human brain in vivo is white matter fiber tractography that uses magnetic resonance diffusion tensor imaging. The success of this method depends strongly on the capability of the applied tracking algorithm and the quality of the underlying data set. However, DTI-based fiber tractography still lacks standardized validation.

View Article and Find Full Text PDF

Pairs of cylindrical knives were used to punch semicircular slices from the left basal, sub-basal, equatorial, and apical ventricular wall of porcine hearts. The sections extended from the epicardium to the endocardium. Their semicircular shape compensated for the depth-related changing orientation of the myocytes relative to the equatorial plane.

View Article and Find Full Text PDF

Acute mountain sickness is common among not acclimatized persons ascending to high altitude; the underlying mechanism is unknown, but may be related to cerebral edema. Nine healthy male students were studied before and after 6-h exposure to isobaric hypoxia. Subjects inhaled room air enriched with N(2) to obtain arterial O(2) saturation values of 75 to 80%.

View Article and Find Full Text PDF

Background And Purpose: Diffusion tensor and diffusion-weighted spinal cord imaging remain relatively unexplored techniques despite demonstrations that such images can be obtained and may yield clinically relevant findings. In this study, we examined the temporal dynamics of spinal cord motion and their impact on diffusion tensor image quality.

Methods: Four healthy volunteers underwent phase contrast-based velocity mapping and segmented echo-planar diffusion tensor scans of the cervical spinal cord.

View Article and Find Full Text PDF

Limited spatial resolution is a key obstacle to the study of brain white matter structure with diffusion tensor imaging (DTI). In its frequent implementation with single-excitation spin-echo echo-planar sequences, DTI's ability to resolve small structures is strongly restricted by T2 and T2* decay, B0 inhomogeneity, and limited signal-to-noise ratio (SNR). In this work the influence of sensitivity encoding (SENSE) on diffusion-weighted (DW) image properties is investigated.

View Article and Find Full Text PDF

The global muscle and collagen fiber orientation in the human uterus has been analyzed hitherto by various standard microscopic techniques. However, no widely accepted model of the fiber architecture of the myometrium could be acquired. The purpose of the present study was to investigate the uterus by magnetic resonance (MR) diffusion tensor imaging (DTI) in a 3D macroscopic approach.

View Article and Find Full Text PDF

Magnetic resonance diffusion tensor tractography is a powerful tool for the non-invasive depiction of the white matter architecture in the human brain. However, due to limitations in the underlying tensor model, the technique is often unable to reconstruct correct trajectories in heterogeneous fiber arrangements, such as axonal crossings. A novel tractography method based on fast marching (FM) is proposed which is capable of resolving fiber crossings and also permits trajectories to branch.

View Article and Find Full Text PDF

Day-to-day memories undergo transformation from short-term to long-term storage, a process called memory consolidation. Animal studies showed that memory consolidation requires protein synthesis and the growth of new hippocampal synapses within 24 h. To test for effects of memory consolidation in the human, we examined brain activation during the retrieval of information at 10 min and at 24 h following learning using functional magnetic resonance imaging (fMRI), an indirect measure of synaptic activity.

View Article and Find Full Text PDF

Objective: The three-dimensional arrangement of the ventricular myocardial architecture remains controversial, in part because histological assessment is difficult to achieve, while anatomic dissections are, of necessity, destructive. In this study, we describe how the use of magnetic resonance diffusion tensor imaging has permitted us to reconstruct with precision the architecture of the ventricular myocardial fibres in the post-mortem swine heart.

Methods And Results: We obtained diffusion-weighted spin-echo measurements of autopsied porcine hearts using a whole body MR system.

View Article and Find Full Text PDF

When both detections and responses to visual stimuli are performed within one and the same hemisphere, manual reaction times (RTs) are faster than when the two operations are carried out in different hemispheres. A widely accepted explanation for this difference is that it reflects the time lost in callosal transmission. Interhemispheric transfer time can be estimated by subtracting RTs for uncrossed from RTs for crossed responses (crossed-uncrossed difference, or CUD).

View Article and Find Full Text PDF

While holding vast potential, diffusion tensor imaging (DTI) with single-excitation protocols still faces serious challenges. Limited spatial resolution, susceptibility to magnetic field inhomogeneity, and low signal-to-noise ratio (SNR) may be considered the most prominent limitations. It is demonstrated that all of these shortcomings can be effectively mitigated by the transition to parallel imaging technology and high magnetic field strength.

View Article and Find Full Text PDF

The human cortex reportedly contains at least five nonprimary motor areas: in the frontolateral convexity, the dorsal and ventral premotor cortex (PMd and PMv), and in the frontomesial wall, the presupplementary and supplementary motor areas (pre-SMA and SMA), and the rostral, dorsal and ventral cingulate areas (CMAr, CMAd, and CMAv). Activation of these regions in neuroimaging studies has been generally associated either with the performance of complex motor tasks or with reorganization occurring with motor recovery in the presence of pathology. Recent evidence from neuroimaging studies suggests that the same areas are activated with well controlled simple movements in healthy subjects providing support to the observation that their contribution may be more quantitative rather than exclusively specific to a certain aspect of motor behaviour.

View Article and Find Full Text PDF