Chromatin modifications, especially histone-tail acetylation, have been implicated in memory formation. Increased histone-tail acetylation induced by inhibitors of histone deacetylases (HDACis) facilitates learning and memory in wild-type mice as well as in mouse models of neurodegeneration. Harnessing the therapeutic potential of HDACis requires knowledge of the specific HDAC family member(s) linked to cognitive enhancement.
View Article and Find Full Text PDFNestin is an intermediate filament protein expressed specifically in neural stem cells and progenitor cells of the central nervous system. DNA demethylation and histone modifications are two types of epigenetic modifications working in a coordinate or synergistic manner to regulate the expression of various genes. This study investigated and elucidated the epigenetic regulation of Nestin gene expression during embryonic differentiation along the neural cell lineage.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson's disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2009
Mutations of MECP2 (Methyl-CpG Binding Protein 2) cause Rett syndrome. As a chromatin-associated multifunctional protein, how MeCP2 integrates external signals and regulates neuronal function remain unclear. Although neuronal activity-induced phosphorylation of MeCP2 at serine 421 (S421) has been reported, the full spectrum of MeCP2 phosphorylation together with the in vivo function of such modifications are yet to be revealed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2009
Rett Syndrome (RTT) is a severe form of X-linked mental retardation caused by mutations in the gene coding for methyl CpG-binding protein 2 (MECP2). Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. Here we show that systemic treatment of MeCP2 mutant mice with an active peptide fragment of Insulin-like Growth Factor 1 (IGF-1) extends the life span of the mice, improves locomotor function, ameliorates breathing patterns, and reduces irregularity in heart rate.
View Article and Find Full Text PDFThere is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. Although there are some well-characterized examples, most (>95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise.
View Article and Find Full Text PDFProviruses carrying drug-inducible Oct4, Sox2, Klf4 and c-Myc used to derive 'primary' induced pluripotent stem (iPS) cells were segregated through germline transmission, generating mice and cells carrying subsets of the reprogramming factors. Drug treatment produced 'secondary' iPS cells only when the missing factor was introduced. This approach creates a defined system for studying reprogramming mechanisms and allows screening of genetically homogeneous cells for compounds that can replace any transcription factor required for iPS cell derivation.
View Article and Find Full Text PDFCell fusion has been used for many different purposes, including generation of hybridomas and reprogramming of somatic cells. The fusion step is the key event in initiation of these procedures. Standard fusion techniques, however, provide poor and random cell contact, leading to low yields.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2009
Directed reprogramming of somatic cells by defined factors provides a novel method for the generation of patient-specific stem cells with the potential to bypass both the practical and ethical concerns associated with somatic cell nuclear transfer (SCNT) and human embryonic stem (hES) cells. Although the generation of induced pluripotent stem (iPS) cells has proven a robust technology in mouse and human, a major impediment to the use of iPS cells for therapeutic purposes has been the viral-based delivery of the reprogramming factors because multiple proviral integrations pose the danger of insertional mutagenesis. Here we report a novel approach to reduce the number of viruses necessary to reprogram somatic cells by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, which support efficient polycistronic expression from a single promoter.
View Article and Find Full Text PDFPluripotent embryonic stem (ES) cell lines were first isolated over 25 years ago and remain an essential tool in molecular and developmental biology to this day. In particular, the use of homologous recombination and subsequent generation of ES-derived mice has greatly facilitated research across all fields. Moreover, ES cells represent an extremely attractive model to study events in early development.
View Article and Find Full Text PDFPluripotency can be induced in differentiated murine by viral transduction of Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006; Wernig, et al., 2007; Okita, et al., 2007; Maherali, et al.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) are thought to divide infrequently based on their resistance to cytotoxic injury targeted at rapidly cycling cells and have been presumed to retain labels such as the thymidine analog 5-bromodeoxyuridine (BrdU). However, BrdU retention is neither a sensitive nor specific marker for HSCs. Here we show that transient, transgenic expression of a histone 2B (H2B)-green fluorescent protein (GFP) fusion protein in mice has several advantages for label-retention studies over BrdU, including rapid induction of H2B-GFP in virtually all HSCs, higher labeling intensity and the ability to prospectively study label-retaining cells, which together permit a more precise analysis of division history.
View Article and Find Full Text PDFElucidating how chromatin influences gene expression patterns and ultimately cell fate is fundamental to understanding development and disease. The histone variant H2AZ has emerged as a key regulator of chromatin function and plays an essential but unknown role during mammalian development. Here, genome-wide analysis reveals that H2AZ occupies the promoters of developmentally important genes in a manner that is remarkably similar to that of the Polycomb group (PcG) protein Suz12.
View Article and Find Full Text PDFBackground And Aims: Epidemiologic studies have linked nutritional folate deficiency to an increased risk of cancer, but recent trials suggest that folate supplementation does not protect against tumor formation. Our aim was to analyze the genetic and epigenetic consequences of folate deficiency and to investigate whether impairment of the uracil base excision repair pathway can enhance its effects.
Methods: Wild-type mice and those deficient in uracil DNA glycosylase (Ung(-/-)) were placed on a folate-deficient diet for 8 months.
Current approaches to reprogram human somatic cells to pluripotent iPSCs utilize viral transduction of different combinations of transcription factors. These protocols are highly inefficient because only a small fraction of cells carry the appropriate number and stoichiometry of proviral insertions to initiate the reprogramming process. Here we have generated genetically homogeneous "secondary" somatic cells, which carry the reprogramming factors as defined doxycycline (DOX)-inducible transgenes.
View Article and Find Full Text PDFWe develop biodegradable polymeric nanoparticles to facilitate nonviral gene transfer to human embryonic stem cells (hESCs). Small (approximately 200 nm), positively charged (approximately 10 mV) particles are formed by the self assembly of cationic, hydrolytically degradable poly(beta-amino esters) and plasmid DNA. By varying the end group of the polymer, we can tune the biophysical properties of the resulting nanoparticles and their gene-delivery efficacy.
View Article and Find Full Text PDFBackground: Genome-wide approaches have begun to reveal the transcriptional networks responsible for pluripotency in embryonic stem (ES) cells. Chromatin Immunoprecipitation (ChIP) followed either by hybridization to a microarray platform (ChIP-chip) or by DNA sequencing (ChIP-PET), has identified binding targets of the ES cell transcription factors OCT4 and NANOG in humans and mice, respectively. These studies have provided an outline of the transcriptional framework involved in maintaining pluripotency.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes.
View Article and Find Full Text PDFExpression of the transcription factors Oct4, Sox2, Klf4, and c-Myc in mesodermal and endodermal derivatives, including fibroblasts, lymphocytes, liver, stomach, and beta cells, generates induced pluripotent stem (iPS) cells. It remains unknown, however, whether cell types of the ectodermal lineage are equally amenable to reprogramming into iPS cells by the same combination of factors. To test this, we have isolated genetically marked neural progenitor cells (NPCs) from neonatal mouse brains and infected them with viral vectors expressing Oct4, Sox2, Klf4, and c-Myc.
View Article and Find Full Text PDFFolate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls.
View Article and Find Full Text PDF