Compositional engineering of organic-inorganic metal halide perovskite allows for improved optoelectrical properties, however, phase segregation occurs during crystal nucleation and limits perovskite solar cell device performance. Herein, we show that by applying tetrabutylammonium bistriflimide as an additive in the perovskite precursor solution, ultra-uniform perovskite crystals are obtained, which effectively increases device performance. As a result, power conversion efficiencies (PCEs) of 24.
View Article and Find Full Text PDFEnergy Environ Sci
July 2024
Organic-inorganic perovskite materials have gradually progressed from single-junction solar cells to tandem (double) or even multi-junction (triple-junction) solar cells as all-perovskite tandem solar cells (APTSCs). Perovskites have numerous advantages: (1) tunable optical bandgaps, (2) low-cost, solution-processing, inexpensive precursors, and compatibility with many thin-film processing technologies, (3) scalability and lightweight, and (4) eco-friendliness related to low CO emission. However, APTSCs face challenges regarding stability caused by Sn oxidation in narrow bandgap perovskites, low performance due to deficit in the wide bandgap range, non-standardisation of charge recombination layers, and challenging thin-film deposition as each layer must be nearly perfectly homogenous.
View Article and Find Full Text PDFACS Sustain Resour Manag
March 2024
While perovskite photovoltaic (PV) devices are on the verge of commercialization, promising methods to recycle or remanufacture fully encapsulated perovskite solar cells (PSCs) and modules are still missing. Through a detailed life-cycle assessment shown in this work, we identify that the majority of the greenhouse gas emissions can be reduced by re-using the glass substrate and parts of the PV cells. Based on these analytical findings, we develop a novel thermally assisted mechanochemical approach to remove the encapsulants, the electrode, and the perovskite absorber, allowing reuse of most of the device constituents for remanufacturing PSCs, which recovered nearly 90% of their initial performance.
View Article and Find Full Text PDFThe most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g.
View Article and Find Full Text PDFHalide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) approaching 26%, however, the stability issue hinders their commercialization. Due to the soft ionic nature of perovskite materials, the strain effect on perovskite films has been recently recognized as one of the key factors that affects their opto-electronic properties and the device stability. Herein, we summarized the origins of strain, characterization techniques, and implications of strain on both perovskite film and solar cells as well as various strategies to control the strain.
View Article and Find Full Text PDF