Publications by authors named "Jaejin Shin"

The process of cellular senescence, which is characterized by stable cell cycle arrest, is strongly associated with dysfunctional cellular metabolism and circadian rhythmicity, both of which are reported to result from and also be causal to cellular senescence. As a result, modifying any of them-senescence, metabolism, or the circadian clock-may affect all three simultaneously. Obesity accelerates aging by disrupting the homeostasis of reactive oxygen species (ROS) via an increased mitochondrial burden of fatty acid oxidation.

View Article and Find Full Text PDF

Background: Ageing alters the ECM, leading to mitochondrial dysfunction and oxidative stress, which triggers an inflammatory response that exacerbates with age. Age-related changes impact satellite cells, affecting muscle regeneration, and the balance of proteins. Furthermore, ageing causes a decline in NAD levels, and alterations in fat metabolism that impact our health.

View Article and Find Full Text PDF

Vutiglabridin is a clinical-stage synthetic small molecule that is being developed for the treatment of obesity and its target proteins have not been fully identified. Paraoxonase-1 (PON1) is an HDL-associated plasma enzyme that hydrolyzes diverse substrates including oxidized low-density lipoprotein (LDL). Furthermore, PON1 harbors anti-inflammatory and antioxidant capacities and has been implicated as a potential therapeutic target for treating various metabolic diseases.

View Article and Find Full Text PDF

Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative effects. In the previous study, we synthesized glabridin derivatives-HSG4112, (S)-HSG4112, and HGR4113-based on the structure-activity relationship study of glabridin to improve its biological efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.

View Article and Find Full Text PDF
Article Synopsis
  • * This study explored the link between cellular senescence (a state where cells stop dividing due to aging or damage) and retinal changes in mouse models, finding increased signs of senescence and AMD-related issues in older mice.
  • * Researchers observed that mice lacking the Zmpste24 gene, which models accelerated aging, showed significantly more markers of cellular senescence and greater retinal damage, indicating that these mice could be useful for studying AMD.
View Article and Find Full Text PDF