High pathogenicity avian influenza (HPAI) viruses of clade 2.3.4.
View Article and Find Full Text PDFUnlabelled: Exopolysaccharide (EPS)-producing EPS DA-LAIM was isolated from healthy human feces, the structure of purified EPS from the strain was analyzed, and its prebiotic activity was evaluated. The EPS from EPS DA-LAIM is a glucomannan-type heteropolysaccharide with a molecular weight of 407-1007 kDa, and its structure comprises 2-mannosyl, 6-mannosyl, and 2,6-mannosyl residues. The purified EPS promoted the growth of representative lactic acid bacteria and bifidobacterial strains.
View Article and Find Full Text PDFExopolysaccharide (EPS)-producing EPS DA-BACS was isolated from healthy human feces and its probiotic properties, as well as the structure and prebiotic activity of the EPS from this strain were examined. EPS from EPS DA-BACS had a ropy phenotype, which is known to have potential health benefits and is identified as loosely cell-bounded glucomannan-type EPS with a molecular size of 3.7 × 10 Da.
View Article and Find Full Text PDFBackground: The ε4 allele of apolipoprotein E (APOE ε4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD), associated with amyloid pathogenesis. However, it is not clear how APOE ε4 accelerates amyloid-beta (Aβ) deposition during the seeding stage of amyloid development in AD patient neurons.
Methods: AD patient induced neurons (iNs) with an APOE ε4 inducible system were prepared from skin fibroblasts of AD patients.
Background: Aberrant DNA methylation patterns have been observed in neurodegenerative diseases, including Alzheimer's disease (AD), and dynamic changes in DNA methylation are closely associated with the onset and progression of these diseases. Particularly, hypomethylation of the amyloid precursor protein gene (APP) has been reported in patients with AD.
Methods: In this study, we used catalytically inactivated Cas9 (dCas9) fused with Dnmt3a for targeted DNA methylation of APP, and showed that the CRISPR/dCas9-Dnmt3a-mediated DNA methylation system could efficiently induce targeted DNA methylation of APP both in vivo and in vitro.
Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency.
View Article and Find Full Text PDFAn increasing number of studies have indicated that alterations in gut microbiota affect brain function, including cognition and memory ability, via the gut-brain axis. In this study, we aimed to determine the protective effect of Bifidobacterium bifidum BGN4 (B. bifidum BGN4) and Bifidobacterium longum BORI (B.
View Article and Find Full Text PDFZoonotic infection with avian influenza viruses (AIVs) of subtype H7, such as H7N9 and H7N4, has raised concerns worldwide. During the winter of 2020-2021, five novel H7 low pathogenic AIVs (LPAIVs) containing different neuraminidase (NA) subtypes, including two H7N3, an H7N8, and two H7N9, were detected in wild bird feces in South Korea. Complete genome sequencing and phylogenetic analysis showed that the novel H7Nx AIVs were reassortants containing two gene segments (hemagglutinin (HA) and matrix) that were related to the zoonotic Jiangsu-Cambodian H7 viruses causing zoonotic infection and six gene segments originating from LPAIVs circulating in migratory birds in Eurasia.
View Article and Find Full Text PDFThe first human case of zoonotic A(H7N4) avian influenza virus (AIV) infection was reported in early 2018 in China. Two months after this case, novel A(H7N4) viruses phylogenetically related to the Jiangsu isolate emerged in ducks from live bird markets in Cambodia. During active surveillance in Cambodia, a novel A(H7N6) reassortant of the zoonotic low pathogenic AIV (LPAIV) A(H7N4) was detected in domestic ducks at a slaughterhouse.
View Article and Find Full Text PDFSince its first appearance in 1996, H9N2 avian influenza virus (AIV) of the Y439 lineage persisted in Korean live bird markets (LBMs) until the last documented occurrence in 2018. However, in June 2020, the avian influenza surveillance program detected a novel H9N2 AIV belonging to the Y280 lineage, which has zoonotic potential, in a Korean native chicken (KNC) from a LBM. In this study, we infected KNCs and ducks (the 2 major species held at LBMs), as well as SPF chickens, with Y280-lineage H9N2 AIV LBM261/20 and Y439-equivalent LBM294/18 to compare pathogenicity and transmissibility.
View Article and Find Full Text PDFDuring October 2020-January 2021, we isolated a total of 67 highly pathogenic avian influenza (HPAI) H5N8 viruses from wild birds and outbreaks in poultry in South Korea. We sequenced the isolates and performed phylogenetic analysis of complete genome sequences to determine the origin, evolution, and spread patterns of these viruses. Phylogenetic analysis of the hemagglutinin (HA) gene showed that all the isolates belong to H5 clade 2.
View Article and Find Full Text PDFResearchers have been interested in probing how the environmental factors associated with allergic diseases affect the use of medical services. Considering this demand, we have constructed a database, named the Allergic Disease Database, based on the National Health Insurance Database (NHID). The NHID contains information on demographic and medical service utilization for approximately 99% of the Korean population.
View Article and Find Full Text PDFClin Exp Vaccine Res
July 2020
Purpose: In this study, we investigated whether the antigenic changes of the virus-like particles (VLPs) are affected by the temperature during storage.
Materials And Methods: After exposing the recombinant influenza VLPs to various temperatures for a period, antigenic changes were examined through hemagglutination receptor binding assay and mouse experiments.
Results: Influenza VLPs were exposed at three different temperatures of low, middle, and high on a thermo-hygrostat.
N-methyladenosine (mA), a conserved epitranscriptomic modification of eukaryotic mRNA (mRNA), plays a critical role in a variety of biological processes. Here, we report that mA modification plays a key role in governing direct lineage reprogramming into induced neuronal cells (iNs). We found that mA modification is required for the remodeling of specific mRNAs required for the neuronal direct conversion.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has emerged as a powerful technology, with the potential to generate transgenic animals. Particularly, efficient and precise genetic editing with CRISPR/Cas9 offers immense prospects in various biotechnological applications. Here, we report that the histone deacetylase inhibitor valproic acid (VPA) significantly increases the efficiency of CRISPR/Cas9-mediated gene editing in mouse embryonic stem cells and embryos.
View Article and Find Full Text PDFRecent advances in generating three-dimensional (3D) organoid systems from stem cells offer new possibilities for disease modeling and drug screening because organoids can recapitulate aspects of in vivo architecture and physiology. In this study, we generate isogenic 3D midbrain organoids with or without a Parkinson's disease-associated LRRK2 G2019S mutation to study the pathogenic mechanisms associated with LRRK2 mutation. We demonstrate that these organoids can recapitulate the 3D pathological hallmarks observed in patients with LRRK2-associated sporadic Parkinson's disease.
View Article and Find Full Text PDFCell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming.
View Article and Find Full Text PDFInduced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues.
View Article and Find Full Text PDFThe recent generation of induced neurons by direct lineage conversion holds promise for in vitro modelling of sporadic Alzheimer's disease. Here, we report the generation of induced neuron-based model of sporadic Alzheimer's disease in mice and humans, and used this system to explore the pathogenic mechanisms resulting from the sporadic Alzheimer's disease risk factor apolipoprotein E (APOE) ɛ3/4 allele. We show that mouse and human induced neurons overexpressing mutant amyloid precursor protein in the background of APOE ɛ3/4 allele exhibit altered amyloid precursor protein (APP) processing, abnormally increased production of amyloid-β42 and hyperphosphorylation of tau.
View Article and Find Full Text PDFElectromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes.
View Article and Find Full Text PDF