Publications by authors named "Jaeil Kim"

We demonstrate the facile fabrication of metal-wire-embedded microtrenches interconnected with semiconducting ZnO nanowires (ZNWs) through the continuous mechanical machining of micrograting trenches, the mechanical embedding of solution-processable metal wires therein, and the metal-mediated hydrothermal growth of ZNWs selectively thereto. The entire process can be performed at room or a very low temperature without resorting to vacuum, lithography, and etching steps, thereby enabling the use of flexible polymer substrates of scalable sizes. We optimize the fabrication procedure and resulting structural characteristics of this nanowire-interconnected flexible trench-embedded electrode (NIFTEE) architecture.

View Article and Find Full Text PDF

Immunogenicity assessment is vital in clinical trials and is measured through a multi-tiered approach (screening, confirmatory and titer assays). However, recent studies have suggested that titer results could be reported from ADA signal-to-noise ratios (S/N ratios=sample mean signal/negative control mean signal). More data analysis using two clinical trials of adalimumab: SB5-1003 (single-dose, healthy participants) and SB5-4001 (multiple-dose, interchangeability study, patients with plaque psoriasis), therefore, is indispensable whether substituting ADA S/N ratio as an alternative way of reporting titer results has no impact on interpretation on clinical outcome.

View Article and Find Full Text PDF

Skin-interfaced electronics have emerged as a promising frontier in personalized healthcare. However, existing skin-interfaced patches often struggle to simultaneously achieve robust skin adhesion, adaptability to dynamic body motions, seamless integration of bulky devices, and on-demand, damage-free detachment. Here, a hybrid strategy that synergistically combines these critical features within a thin, flexible patch platform is introduced.

View Article and Find Full Text PDF
Article Synopsis
  • Asteraceae plants are recognized globally for their potential as herbal remedies, but understanding how extraction methods affect bioactive compound yields is crucial for their use in food, cosmetics, and pharmaceuticals.
  • Previous studies have largely ignored the impact of solvent selection on extraction efficiency, focusing instead on individual species' activities or compositions.
  • This work aims to analyze extraction techniques and solvent properties to highlight the importance of continued research and clinical trials, ultimately showcasing the potential of Asteraceae plants in various industries.
View Article and Find Full Text PDF

Seminal fluid is rich in sugars, but their role beyond supporting sperm motility is unknown. In this study, we found Drosophila melanogaster males transfer a substantial amount of a phospho-galactoside to females during mating, but only half as much when undernourished. This seminal substance, which we named venerose, induces an increase in germline stem cells (GSCs) and promotes sperm storage in females, especially undernourished ones.

View Article and Find Full Text PDF

The precise control of crack propagation at bonded interfaces is crucial for smart adhesives with advanced performance. However, previous studies have primarily concentrated on either microscale or macroscale crack propagation. Here, we present a hybrid adhesive that integrates microarchitectures and macroscopic nonlinear cut architectures for unparalleled adhesion control.

View Article and Find Full Text PDF

Despite recent advancements, artificial muscles have not yet been able to strike the right balance between exceptional mechanical properties and dexterous actuation abilities that are found in biological systems. Here, we present an artificial magnetic muscle that exhibits multiple remarkable mechanical properties and demonstrates comprehensive actuating performance, surpassing those of biological muscles. This artificial muscle utilizes a composite configuration, integrating a phase-change polymer and ferromagnetic particles, enabling active control over mechanical properties and complex actuating motions through remote laser heating and magnetic field manipulation.

View Article and Find Full Text PDF

Obesity is a complex health condition characterized by excessive adipose tissue accumulation, leading to significant metabolic disturbances such as insulin resistance and cardiovascular diseases. Fatty acid synthase (FAS), a key enzyme in lipogenesis, has been identified as a potential therapeutic target for obesity due to its role in adipocyte differentiation and lipid accumulation. This study employed a multidisciplinary approach involving in silico and in vitro analyses to investigate the anti-adipogenic properties of maclurin, a natural phenolic compound derived from .

View Article and Find Full Text PDF

Stretchable and self-adhesive conductive hydrogels hold significant importance across a wide spectrum of applications, including human-machine interfaces, wearable devices, and soft robotics. However, integrating multiple properties, such as high stretchability, strong interfacial adhesion, self-healing capability, and sensitivity, into a single material poses significant technical challenges. Herein, we present a multifunctional conductive hydrogel based on poly(acrylic acid) (PAA), dopamine-functionalized pectin (PT-DA), polydopamine-coated reduction graphene oxide (rGO-PDA), and Fe as an ionic cross-linker.

View Article and Find Full Text PDF

Meiosis is a specialized eukaryotic division that produces genetically diverse gametes for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal exchanges, called crossovers, which recombine genetic variation. Meiotic crossovers are stringently controlled with at least one obligate exchange forming per chromosome pair, while closely spaced crossovers are inhibited by interference.

View Article and Find Full Text PDF

Background & Aims: Although non-alcoholic fatty liver disease (NAFLD) is becoming a leading cause of hepatocellular carcinoma (HCC), HCC risk in non-cirrhotic NAFLD received little attention. We aimed to develop and validate an HCC risk prediction model for non-cirrhotic NAFLD.

Methods: A nationwide cohort of non-cirrhotic NAFLD patients in Korea was recruited to develop a risk prediction model and validate it internally (n = 409 088).

View Article and Find Full Text PDF

This study aims to explore the anti-inflammatory mechanisms of sargachromenol in both RAW 264.7 cells and lipopolysaccharide (LPS)-treated mice, as previous reports have suggested that sargachromenol possesses anti-aging, anti-inflammatory, antioxidant, and neuroprotective properties. Although the precise mechanism behind its anti-inflammatory activity remains unclear, pretreatment with sargachromenol effectively reduced the production of nitric oxide, prostaglandin E, and interleukin (IL)-1 in LPS-stimulated RAW 264.

View Article and Find Full Text PDF

The limited availability of treatments for many infectious diseases highlights the need for new treatments, particularly for viral infections. Natural compounds from seaweed are attracting increasing attention for the treatment of various viral diseases, and thousands of novel compounds have been isolated for the development of pharmaceutical products. Seaweed is a rich source of natural bioactive compounds, including polysaccharides.

View Article and Find Full Text PDF

The skin is the outermost anatomical barrier, which plays a vital role in the maintenance of internal homeostasis and protection against physical, chemical, and biological detractors. Direct contact with various stimuli leads to several physiological changes that are ultimately important for the growth of the cosmetic industry. Due to the consequences of using synthetic compounds in skincare and cosmeceutical-related industries, the pharmaceutical and scientific communities have recently shifted their focus to natural ingredients.

View Article and Find Full Text PDF

The anti-friction of diamond-like carbon (DLC) is achieved by a well-developed carbonaceous transfer layer, and Ti-doped DLC is developed into a robustly built-up carbonaceous transfer layer. The friction performance of DLC depends on the operating environment, e.g.

View Article and Find Full Text PDF

In the medical field, it is delicate to anticipate good performance in using deep learning due to the lack of large-scale training data and class imbalance. In particular, ultrasound, which is a key breast cancer diagnosis method, is delicate to diagnose accurately as the quality and interpretation of images can vary depending on the operator's experience and proficiency. Therefore, computer-aided diagnosis technology can facilitate diagnosis by visualizing abnormal information such as tumors and masses in ultrasound images.

View Article and Find Full Text PDF

Ionotronic hydrogels have attracted significant attention in emerging fields such as wearable devices, flexible electronics, and energy devices. To date, the design of multifunctional ionotronic hydrogels with strong interfacial adhesion, rapid self-healing, three-dimensional (3D) printing processability, and high conductivity are key requirements for future wearable devices. Herein, we report the rational design and facile synthesis of 3D printable, self-adhesive, self-healing, and conductive ionotronic hydrogels based on the synergistic dual reversible interactions of poly(vinyl alcohol), borax, pectin, and tannic acid.

View Article and Find Full Text PDF

We tackle the cross-domain visual localization problem of estimating camera position and orientation from real images without three-dimensional (3D) spatial mapping or modeling. Recent studies have shown suboptimal performance in this task owing to the photometric and geometric differences between synthetic and real images. In this study, we present a deep learning approach that uses a channel-wise transformer localization (CT-Loc) framework.

View Article and Find Full Text PDF
Article Synopsis
  • Coagulation is a protective process where zymogens are activated to change fibrinogen into fibrin clots, which helps stop bleeding, but can lead to complications if uncontrolled.
  • Inhibitory mechanisms usually keep coagulation in check, but factors like genetics or aging can cause problems, resulting in harmful blood clots and cardiovascular issues.
  • There's growing research into natural anticoagulants from marine sources due to their effective and safe properties, as traditional anticoagulants like heparin have limitations.
View Article and Find Full Text PDF

The aims of the study are to evaluate idiopathic normal-pressure hydrocephalus (INPH)-related cerebral blood flow (CBF) abnormalities and to investigate their relation to cortical thickness in INPH patients. We investigated cortical CBF utilizing surface-based early-phase F-florbetaben (E-FBB) PET analysis in two groups: INPH patients and healthy controls. All 39 INPH patients and 20 healthy controls were imaged with MRI, including three-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain.

View Article and Find Full Text PDF

During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.

View Article and Find Full Text PDF

Maclurin is rich in some edible fruits such as (white mulberry) and . Although maclurin showed anti-cancer and antioxidant effects, its roles in ultraviolet (UV)-induced melanogenesis have not been studied. Here, we investigated the effects of maclurin in melanogenesis using skin cells and a three-dimensional human skin model.

View Article and Find Full Text PDF

Background: Determination of implant size is crucial for patients with breast cancer undergoing one-stage breast reconstruction. The purpose of this study is to predict the implant size based on the breast volume measured by mammography (MG) with a fully automated method, and by breast magnetic resonance imaging (MRI) with a semi-automated method, in breast cancer patients with direct-to-implant reconstruction.

Patients And Methods: This retrospective study included 84 patients with breast cancer who underwent direct-to-implant reconstruction after nipple-sparing or skin-sparing mastectomy and preoperative MG and MRI between April 2015 and April 2019.

View Article and Find Full Text PDF