Background And Purpose: The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA).
Experimental Approach: The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays.
A hallmark of eukaryotic aging is a loss of epigenetic information, a process that can be reversed. We have previously shown that the ectopic induction of the Yamanaka factors OCT4, SOX2, and KLF4 (OSK) in mammals can restore youthful DNA methylation patterns, transcript profiles, and tissue function, without erasing cellular identity, a process that requires active DNA demethylation. To screen for molecules that reverse cellular aging and rejuvenate human cells without altering the genome, we developed high-throughput cell-based assays that distinguish young from old and senescent cells, including transcription-based aging clocks and a real-time nucleocytoplasmic compartmentalization (NCC) assay.
View Article and Find Full Text PDFOwing to the high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the capacity of testing systems based on the gold standard real-time reverse transcription-polymerase chain reaction (rRT-PCR) is limited. Rapid antigen tests (RATs) can substantially contribute to the prevention of community transmission, but their further assessment is required. Here, using 1503 nasopharyngeal swabs, we compared the diagnostic performance of four RAT kits (Abbott Panbio™ COVID-19 Ag Rapid Test, SD Biosensor Standard™ Q COVID-19 Ag Test, Humasis COVID-19 Ag Test, and SG Medical Acrosis COVID-19 Ag Test) to the cycle threshold (Ct) values obtained from rRT-PCR.
View Article and Find Full Text PDFAll living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic human coronavirus and is rapidly transmitted by infected individuals regardless of their symptoms. During the COVID-19 pandemic, owing to the dearth of skilled healthcare workers (HCWs) to collect samples for early diagnosis, self-collection emerged as a viable alternative. To evaluate the reliability of self-collection, we compared the virus detection rate using 3990 self-collected swabs and HCW-collected swabs, procured from the same individuals and collected immediately after the self-collection.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is still rapidly spreading as of March 2022. An accurate and rapid molecular diagnosis is essential to determine the exact number of confirmed cases. Currently, the viral transport medium (VTM) required for testing is in short supply due to a sharp increase in the laboratory tests performed, and alternative VTMs are needed to alleviate the shortage.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus (SARS-CoV-2) is highly contagious and causes coronavirus disease 2019 (COVID-19). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the most accurate and reliable molecular assay to detect active SARS-CoV-2 infection. However, a rapid increase in test subjects has created a global bottleneck in testing capacity.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection of RV and SARS-CoV-2 is crucial to manage these infections. Here, we compared the analytical performance and clinical reliability of Allplex™ SARS-CoV-2/FluA/FluB/RSV (SC2FabR; Seegene Inc.
View Article and Find Full Text PDFClassification of clinical symptoms and diagnostic microbiology are essential to effectively employ antimicrobial therapy for lower respiratory tract infections (LRTIs) in a timely manner. Empirical antibiotic treatment without microbial identification hinders the selective use of narrow-spectrum antibiotics and effective patient treatment. Thus, the development of rapid and accurate diagnostic procedures that can be readily adopted by the clinic is necessary to minimize non-essential or excessive use of antibiotics and accelerate patient recovery from LRTI-induced damage.
View Article and Find Full Text PDFAgeing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity. Changes to DNA methylation patterns over time form the basis of ageing clocks, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known.
View Article and Find Full Text PDFConstitutive heterochromatin undergoes a dynamic clustering and spatial reorganization during myogenic differentiation. However the detailed mechanisms and its role in cell differentiation remain largely elusive. Here, we report the identification of a muscle-specific long non-coding RNA, ChRO1, involved in constitutive heterochromatin reorganization.
View Article and Find Full Text PDFReplication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.
View Article and Find Full Text PDFWe investigated, for the first time, the photoresponse characteristics of solution-synthesized MoS2 phototransistors. The photoresponse of the solution-synthesized MoS2 phototransistor was solely determined by the interactions of the photogenerated charge carriers with the surface adsorbates and the interface trap sites. Instead of contributing to the photocurrent, the illumination-generated electron-hole pairs were captured in the trap sites (surface and interface sites) due to the low carrier mobility of the solution-synthesized MoS2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2016
We introduce an amorphous indium-gallium-zinc-oxide (a-IGZO) heterostructure phototransistor consisting of solution-based synthetic molybdenum disulfide (few-layered MoS2, with a band gap of ∼1.7 eV) and sputter-deposited a-IGZO (with a band gap of ∼3.0 eV) films as a novel sensing element with a broad spectral responsivity.
View Article and Find Full Text PDFThe downscaling of the capacitance equivalent oxide thickness (CET) of a gate dielectric film with a high dielectric constant, such as atomic layer deposited (ALD) HfO2, is a fundamental challenge in achieving high-performance graphene-based transistors with a low gate leakage current. Here, we assess the application of various surface modification methods on monolayer graphene sheets grown by chemical vapour deposition to obtain a uniform and pinhole-free ALD HfO2 film with a substantially small CET at a wafer scale. The effects of various surface modifications, such as N-methyl-2-pyrrolidone treatment and introduction of sputtered ZnO and e-beam-evaporated Hf seed layers on monolayer graphene, and the subsequent HfO2 film formation under identical ALD process parameters were systematically evaluated.
View Article and Find Full Text PDFThe eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3.
View Article and Find Full Text PDFThe wafer-scale synthesis of two-dimensional molybdenum disulfide (MoS2) films, with high layer-controllability and uniformity, remains a significant challenge in the fields of nano and optoelectronics. Here, we report the highly thickness controllable growth of uniform MoS2 thin films on the wafer-scale via a spin-coating route. Formulation of a dimethylformamide-based MoS2 precursor solution mixed with additional amine- and amino alcohol-based solvents (n-butylamine and 2-aminoethanol) allowed for the formation of a uniform coating of MoS2 thin films over a 2 inch wafer-scale SiO2/Si substrate.
View Article and Find Full Text PDFWe report on the effect of oxygen plasma treatment of two-dimensional multilayer MoS2 crystals on the subsequent growth of Al2O3 and HfO2 films, which were formed by atomic layer deposition (ALD) using trimethylaluminum and tetrakis-(ethylmethylamino)hafnium metal precursors, respectively, with water oxidant. Due to the formation of an ultrathin Mo-oxide layer on the MoS2 surface, the surface coverage of Al2O3 and HfO2 films was significantly improved compared to those on pristine MoS2, even at a high ALD temperature. These results indicate that the surface modification of MoS2 by oxygen plasma treatment can have a major impact on the subsequent deposition of high-k thin films, with important implications on their integration in thin film transistors.
View Article and Find Full Text PDFThe mammalian genome encodes multiple variants of histone H3 including H3.1/H3.2 and H3.
View Article and Find Full Text PDFThis study examines the effects of doping ZnO nanowires (NWs) with Sn on the growth morphology and electrical properties. ZnO NWs with various Sn contents (1-3 at.%) were synthesized using the vapor-liquid-solid method.
View Article and Find Full Text PDFUnlike graphene, the existence of bandgaps (1-2 eV) in the layered semiconductor molybdenum disulphide, combined with mobility enhancement by dielectric engineering, offers an attractive possibility of using single-layer molybdenum disulphide field-effect transistors in low-power switching devices. However, the complicated process of fabricating single-layer molybdenum disulphide with an additional high-k dielectric layer may significantly limit its compatibility with commercial fabrication. Here we show the first comprehensive investigation of process-friendly multilayer molybdenum disulphide field-effect transistors to demonstrate a compelling case for their applications in thin-film transistors.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2012
Cellular differentiation is a process in which the cells gain a more specialized shape, metabolism, and function. These cellular changes are accompanied by dynamic changes in gene expression programs. In most cases, DNA methylation, histone modification, and variant histones drive the epigenetic transition that reprograms the gene expression.
View Article and Find Full Text PDFHistone chaperones function in histone transfer and regulate the nucleosome occupancy and the activity of genes. HIRA is a replication-independent (RI) histone chaperone that is linked to transcription and various developmental processes. Here, we show that HIRA interacts with Mef2 and contributes to the activation of Mef2-target genes during muscle differentiation.
View Article and Find Full Text PDF