Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes.
View Article and Find Full Text PDFThe pyruvate dehydrogenase complex (PDC) is a multienzyme complex that plays a key role in energy metabolism by converting pyruvate to acetyl-CoA. An increase of nuclear PDC has been shown to be correlated with an increase of histone acetylation that requires acetyl-CoA. PDC has been reported to form a ~ 10 MDa macromolecular machine that is proficient in performing sequential catalytic reactions via its three components.
View Article and Find Full Text PDFUnder nutritional stress, cells undergo metabolic rewiring that results in changes of various cellular processes that include gene transcription. This transcriptional regulation requires dynamic chromatin remodeling that involves histone post-translational modifications. There are several histone marks that may act as switches upon starvation for stress-response pathways.
View Article and Find Full Text PDFACS Chem Biol
March 2019
The nucleosome, the fundamental gene-packing unit comprising an octameric histone protein core wrapped with DNA, has a flexible structure that enables dynamic gene regulation mechanisms. Histone lysine acetylation at H3K56 removes a positive charge from the histone core where it interacts with the termini of the nucleosomal DNA and acts as a critical gene regulatory signal that is implicated in transcription initiation and elongation. The predominant proposal for the biophysical role of H3K56 acetylation (H3K56ac) is that weakened electrostatic interaction between DNA termini and the histone core results in facilitated opening and subsequent disassembly of the nucleosome.
View Article and Find Full Text PDFTranscription elongation through the nucleosome is a precisely coordinated activity to ensure timely production of RNA and accurate regulation of co-transcriptional histone modifications. Nucleosomes actively participate in transcription regulation at various levels and impose physical barriers to RNA polymerase II (RNAPII) during transcription elongation. Despite its high significance, the detailed dynamics of how RNAPII translocates along nucleosomal DNA during transcription elongation and how the nucleosome structure dynamically conforms to the changes necessary for RNAPII progression remain poorly understood.
View Article and Find Full Text PDFRNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone-DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome.
View Article and Find Full Text PDFBiochemistry
February 2017
Nucleosomes impose physical barriers to DNA-templated processes, playing important roles in eukaryotic gene regulation. DNA is packaged into nucleosomes by histone proteins mainly through strong electrostatic interactions that can be modulated by various post-translational histone modifications. Investigating the dynamics of histone dissociation from the nucleosome and how it is altered upon histone modifications is important for understanding eukaryotic gene regulation mechanisms.
View Article and Find Full Text PDFStructural dynamics of a protein molecule is often critical to its function. Single-molecule methods provide efficient ways to investigate protein dynamics, although it is very challenging to achieve a millisecond or higher temporal resolution. Here we report spontaneous structural dynamics of the histone protein core in the nucleosome based on a single-molecule method that can reveal submillisecond dynamics by combining maximum likelihood estimation and fluorescence correlation spectroscopy.
View Article and Find Full Text PDFThe histone H3 variant CENP-A is incorporated into nucleosomes that mark centromere location. We have recently reported that CENP-A nucleosomes, compared with their H3 counterparts, confer an altered nucleosome shape. Here, using a single-molecule fluorescence resonance energy transfer (FRET) approach with recombinant human histones and centromere DNA, we found that the nucleosome shape change directed by CENP-A is dominated by lateral passing of two DNA gyres (gyre sliding).
View Article and Find Full Text PDFJ Phys Chem B
December 2015
The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility.
View Article and Find Full Text PDFThe nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping.
View Article and Find Full Text PDF