Publications by authors named "Jaehong Key"

Unlabelled: The purpose of this study was to investigate the potential of discoidal polymeric particles (DPPs) coated with macrophage membranes as a novel drug delivery system. The study aimed to determine whether these coated particles could reduce phagocytosis, and target specific organs, thereby enhancing drug delivery efficacy. In this study, discoidal polymeric particles (DPPs) were synthesized by a top-down fabrication method serving as the core drug delivery platform.

View Article and Find Full Text PDF

Context: The rapid growth and diversification of drug delivery systems have been significantly supported by advancements in micro- and nano-technologies, alongside the adoption of biodegradable polymeric materials like poly(lactic-co-glycolic acid) (PLGA) as microcarriers. These developments aim to reduce toxicity and enhance target specificity in drug delivery. The use of in silico methods, particularly molecular dynamics (MD) simulations, has emerged as a pivotal tool for predicting the dynamics of species within these systems.

View Article and Find Full Text PDF

Lung cancer is one of the most common malignant tumors worldwide and is characterized by high morbidity and mortality rates and a poor prognosis. It is the leading cause of cancer-related death in the United States and worldwide. Most patients with lung cancer are treated with chemotherapy, radiotherapy, or surgery; however, effective treatment options remain limited.

View Article and Find Full Text PDF

Unlabelled: The aim of this study is to investigate the potential impact of catheterization on intimal hyperplasia and explore the efficacy of Paclitaxel loaded PLGA nanoparticles (PTX-NPs) in preventing stenosis at the site of venous injury. Under general anesthesia, Central Venous Catheters were inserted into the rat's right internal jugular veins (IJV) using the cut-down technique. Twenty bare catheters (C) and twenty PTX-NPs coated catheters (P) were assigned to one of four groups (C2, C4, P2, or P4) based on catheter type and expected survival time.

View Article and Find Full Text PDF

Background: Ototoxicity currently has no available treatment other than medication withdrawal as soon as toxicity is suspected. The human inner ear organs have little potential for regeneration; thus, ototoxicity-induced hair cell injury is deemed permanent. Dexamethasone (Dexa) is a synthetic steroid analog that has significant potential for otoprotection in the treatment of various inner ear diseases; however, its low absorption into the inner ear prevents significant recovery of function.

View Article and Find Full Text PDF

Background: Recombinant tissue plasminogen activator (rtPA) has a short half-life, and additional hemorrhagic transformation (HT) can occur when treatment is delayed. Here, we report the design and thrombolytic performance of 3 [Formula: see text]m discoidal polymeric particles loaded with rtPA and superparamagnetic iron oxide nanoparticles (SPIONs), referred to as rmDPPs, to address the HT issues of rtPA.

Methods: The rmDPPs consisted of a biodegradable polymeric matrix, rtPA, and SPIONs and were synthesized via a top-down fabrication.

View Article and Find Full Text PDF

Sonothrombolysis with recombinant tissue plasminogen activator (rtPA) and microbubbles has been widely studied to enhance thrombolytic potential. Here, we report different sonothrombolysis strategy in nanoparticles using microbubbles cavitation. We found that different particles in shape exhibited different reactivity toward the cavitation, leading to a distinct sonothrombolytic potential.

View Article and Find Full Text PDF

Despite advances in cancer therapy, the discovery of effective cancer treatments remains challenging. In this study, a simple method was developed to increase the efficiency of doxorubicin (DOX) delivery in a lung metastasis model. This method comprises a simple configuration to increase the delivery efficiency precise engineering of the size, shape, loading content, and biodegradability of the drug delivery system.

View Article and Find Full Text PDF

Purpose: Indocyanine green (ICG) is a promising agent for intraoperative visualization of tumor tissues and sentinel lymph nodes in early-stage gynecological cancer. However, it has some limitations, including a short half-life and poor solubility in aqueous solutions. This study aimed to enhance the efficacy of near-infrared (NIR) fluorescence imaging by overcoming the shortcomings of ICG using a nano-drug delivery system and improve target specificity in cervical cancer.

View Article and Find Full Text PDF

Curcumin has great potential in cancer treatment and prevention. However, free curcumin for anticancer effect is limited due to its low water solubility and instability. Delivery of free curcumin using biodegradable and biocompatible polymers, such as poly (lactic--glycolic acid) (PLGA), can improve these undesirable problems.

View Article and Find Full Text PDF

Recently, application of stem cell therapy in regenerative medicine has become an active field of study. Mesenchymal stem cells (MSCs) are known to have a strong ability for homing. MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) exhibit enhanced homing due to magnetic attraction.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are pluripotent stromal cells that release extracellular vesicles (EVs). EVs contain various growth factors and antioxidants that can positively affect the surrounding cells. Nanoscale MSC-derived EVs, such as exosomes, have been developed as bio-stable nano-type materials.

View Article and Find Full Text PDF

Investigation of the dielectric properties of cell membranes plays an important role in understanding the biological activities that sustain cellular life and realize cellular functionalities. Herein, the variable dielectric polarization characteristics of cell membranes are reported. In controlling the dielectric polarization of a cell using dielectrophoresis force spectroscopy, different cellular crossover frequencies were observed by modulating both the direction and sweep rate of the frequency.

View Article and Find Full Text PDF

Curcumin is considered a potential anti-asthmatic agent owing to its anti-inflammatory properties. The objective of the present study was to prepare curcumin-containing poly(lactic--glycolic acid)-based microscale discoidal polymeric particles (Cur-PLGA-DPPs) and evaluate their anti-asthmatic properties using a murine asthma model. Cur-PLGA-DPPs were prepared using a top-down fabrication method.

View Article and Find Full Text PDF

Background And Objective: The dielectrophoresis (DEP) technique is increasingly being recognised as a potentially valuable tool for non-contact manipulation of numerous cells as well as for biological single cell analysis with non-invasive characterisation of a cell's electrical properties. Several studies have attempted to track multiple cells to characterise their cellular DEP mobility. However, they encountered difficulties in simultaneously tracking the movement of a large number of individual cells in a bright-field image sequence because of interference from the background electrode pattern.

View Article and Find Full Text PDF

The technology of directing nanoparticles to specific locations in the body continues to be an area of great interest in a myriad of research fields. In the present study, we have developed nanoparticles and a method that allows the nanoparticles to move to specific sites by simultaneously utilizing the homing ability and magnetism of stem cells. Polymeric clustered SPIO (PCS) nanoparticles are composed of a superparamagnetic iron oxide nanoparticle (SPION) cluster core coated with poly lactic-co-glycolic acid (PLGA) and labeled with the fluorescent dye Cy5.

View Article and Find Full Text PDF

Abstract: Mesenchymal stem cells (MSCs) based therapies are a major field of regenerative medicine. However, the success of MSC therapy relies on the efficiency of its delivery and retention, differentiation, and secreting paracrine factors at the target sites. Recent studies show that superparamagnetic iron oxide nanoparticles (SPIONs) modulate the regenerative effects of MSCs.

View Article and Find Full Text PDF

Many PEGylated nanoparticles activate the complement system, which is an integral component of innate immunity. This is of concern as uncontrolled complement activation is potentially detrimental and contributes to disease pathogenesis. Here, it is demonstrated that, in contrast to carboxyPEG-stabilized poly(lactic--glycolic acid) nanoparticles, surface camouflaging with appropriate combinations and proportions of carboxyPEG and methoxyPEG can largely suppress nanoparticle-mediated complement activation through the lectin pathway.

View Article and Find Full Text PDF

Recent breakthroughs in nanoparticle research have led to improved drug delivery and have overcome problems associated with normal drug delivery methods. Optimizing the design of nanoparticles in terms of controlled size, shape, and surface chemistry of nanoparticles can maximize the therapeutic efficacy. To maximize therapeutic effects, advanced formulation and fabrication methods have been developed.

View Article and Find Full Text PDF

Stem cells possess a promising potential in the clinical field. The application and effective delivery of stem cells to the desired target organ or site of injury plays an important role. This review describes strategies on understanding the effective delivery of stem cells labeled with superparamagnetic iron oxide nanoparticles (SPION) using an external magnet to enhance stem cell migration in vivo and in vitro.

View Article and Find Full Text PDF

Various types of particle-based drug delivery systems have been explored for the treatment of pulmonary diseases; however, bio-distribution and elimination of the particles should be monitored for better understanding of their therapeutic efficacy and safety. This study aimed to characterize the biological properties of micro-sized discoidal polymeric particles (DPPs) as lung-targeted drug delivery carriers. DPPs were prepared using a top-down fabrication approach and characterized by assessing size and zeta potential.

View Article and Find Full Text PDF

The rationale for the design of drug delivery nanoparticles is traditionally based on co-solvent self-assembly following bottom-up approaches or in combination with top-down approaches leading to tailored physiochemical properties to regulate biological responses. However, the optimal design and control of material properties to achieve specific biological responses remain the central challenge in drug delivery research. Considering this goal, we herein designed discoidal polymeric particles (DPPs) whose surfaces are re-engineered with isolated red blood cell (RBC) membranes to tailor their pharmacokinetics.

View Article and Find Full Text PDF

Characterization of cellular dielectrophoretic (DEP) behaviors, when cells are exposed to an alternating current (AC) electric field of varying frequency, is fundamentally important to many applications using dielectrophoresis. However, to date, that characterization has been performed with monotonically increasing or decreasing frequency, not with successive increases and decreases, even though cells might behave differently with those frequency modulations due to the nonlinear cellular electrodynamic responses reported in previous works. In this report, we present a method to trace the behaviors of numerous cells simultaneously at the single-cell level in a simple, robust manner using dielectrophoretic tweezers-based force spectroscopy.

View Article and Find Full Text PDF

Intranasal delivery of mesenchymal stem cells (MSCs) to the olfactory bulb is a promising approach for treating olfactory injury. Additionally, using the homing phenomenon of MSCs may be clinically applicable for developing therapeutic cell carriers. Herein, using superparamagnetic iron oxide nanoparticles (SPIONs) and a permanent magnet, we demonstrated an enhanced homing effect in an olfactory model.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are a family of zinc-dependent enzymes capable of degrading extracellular matrix components. Previous studies have shown that the upregulation of MMP-2 is closely related to metastatic cancers. While Western blotting, zymography, and Enzyme-Linked Immunosorbent Assays (ELISA) can be used to measure the amount of MMP-2 activity, it is not possible to visualize the dynamic MMP-2 activities of cancer cells using these techniques.

View Article and Find Full Text PDF