Publications by authors named "Jaehee V Shim"

Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes.

View Article and Find Full Text PDF

Kinase inhibitors (KIs) represent an important class of anti-cancer drugs. Although cardiotoxicity is a serious adverse event associated with several KIs, the reasons remain poorly understood, and its prediction remains challenging. We obtain transcriptional profiles of human heart-derived primary cardiomyocyte like cell lines treated with a panel of 26 FDA-approved KIs and classify their effects on subcellular pathways and processes.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors (TKIs) are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation-contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs.

View Article and Find Full Text PDF

In contrast to the DNA-based viruses in prokaryotes, the emergence of eukaryotes provided the necessary compartmentalization and membranous environment for RNA viruses to flourish, creating the need for an RNA-targeting antiviral system. Present day eukaryotes employ at least two main defence strategies that emerged as a result of this viral shift, namely antiviral RNA interference and the interferon system. Here we demonstrate that Drosha and related RNase III ribonucleases from all three domains of life also elicit a unique RNA-targeting antiviral activity.

View Article and Find Full Text PDF

With the capacity to fine-tune protein expression via sequence-specific interactions, microRNAs (miRNAs) help regulate cell maintenance and differentiation. While some studies have also implicated miRNAs as regulators of the antiviral response, others have found that the RISC complex that facilitates miRNA-mediated silencing is rendered nonfunctional during cellular stress, including virus infection. To determine the global role of miRNAs in the cellular response to virus infection, we generated a vector that rapidly eliminates total cellular miRNA populations in terminally differentiated primary cultures.

View Article and Find Full Text PDF

Responding to an influenza A virus (IAV) infection demands an effective intrinsic cellular defense strategy to slow replication. To identify contributing host factors to this defense, we exploited the host microRNA pathway to perform an in vivo RNAi screen. To this end, IAV, lacking a functional NS1 antagonist, was engineered to encode individual siRNAs against antiviral host genes in an effort to rescue attenuation.

View Article and Find Full Text PDF

A successful cellular response to virus infection is essential for evolutionary survival. In plants, arthropods, and nematodes, cellular antiviral defenses rely on RNAi. Interestingly, the mammalian response to virus is predominantly orchestrated through interferon (IFN)-mediated induction of antiviral proteins.

View Article and Find Full Text PDF

Utilization of antiviral small interfering RNAs is thought to be largely restricted to plants, nematodes, and arthropods. In an effort to determine whether a physiological interplay exists between the host small RNA machinery and the cellular response to virus infection in mammals, we evaluated antiviral activity in the presence and absence of Dicer or Drosha, the RNase III nucleases responsible for generating small RNAs. Although loss of Dicer did not compromise the cellular response to virus infection, Drosha deletion resulted in a significant increase in virus levels.

View Article and Find Full Text PDF

RNA interference (RNAi) has been extensively used to identify host factors affecting virus infection but requires exogenous delivery of short interfering RNAs (siRNAs), thus limiting the technique to nonphysiological infection models and a single defined cell type. We report an alternative screening approach using siRNA delivery via infection with a replication-competent RNA virus. In this system, natural selection, defined by siRNA production, permits the identification of host restriction factors through virus enrichment during a physiological infection.

View Article and Find Full Text PDF