Publications by authors named "Jaegil Kim"

Purpose: The cancer/testis antigen New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a promising target in myxoid/round cell liposarcoma (MRCLS).

Methods: In this pilot study, we assessed the adoptive T-cell therapy NY-ESO-1cT letetresgene autoleucel (lete-cel) in patients with human leukocyte antigen (HLA)-A*02:01-, HLA-A*02:05-, and/or HLA-A*02:06-positive advanced/metastatic NY-ESO-1-expressing MRCLS. Patients underwent a reduced-dose (cohort 1) or standard-dose (cohort 2) lymphodepletion regimen (LDR).

View Article and Find Full Text PDF

Early-onset breast cancer is known for its aggressive clinical characteristics and high prevalence in East Asian countries, but a comprehensive understanding of its molecular features is still lacking. In this study, we conducted a proteogenomic analysis of 126 treatment-naïve primary tumor tissues obtained from Korean patients with young breast cancer (YBC) aged ≤40 years. By integrating genomic, transcriptomic, and proteomic data, we identified five distinct functional subgroups that accurately represented the clinical characteristics and biological behaviors of patients with YBC.

View Article and Find Full Text PDF

Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-small cell lung cancer (NSCLC). To expand our understanding of the molecular features underlying response to checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up To Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, along with matched clinical response annotation. We identify a number of associations between molecular features and outcome, including (1) favorable (for example, ATM altered) and unfavorable (for example, TERT amplified) genomic subgroups, (2) a prominent association between expression of inducible components of the immunoproteasome and response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced response to checkpoint blockade.

View Article and Find Full Text PDF

Aims/hypothesis: Type 2 diabetes is highly polygenic and influenced by multiple biological pathways. Rapid expansion in the number of type 2 diabetes loci can be leveraged to identify such pathways.

Methods: We developed a high-throughput pipeline to enable clustering of type 2 diabetes loci based on variant-trait associations.

View Article and Find Full Text PDF

Autologous T cells transduced to express a high affinity T-cell receptor specific to NY-ESO-1 (letetresgene autoleucel, lete-cel) show promise in the treatment of metastatic synovial sarcoma, with 50% overall response rate. The efficacy of lete-cel treatment in 45 synovial sarcoma patients (NCT01343043) has been previously reported, however, biomarkers predictive of response and resistance remain to be better defined. This post-hoc analysis identifies associations of response to lete-cel with lymphodepleting chemotherapy regimen (LDR), product attributes, cell expansion, cytokines, and tumor gene expression.

View Article and Find Full Text PDF

Unlabelled: Lung adenocarcinoma (LUAD) is one of the most common cancer types and has various treatment options. Better biomarkers to predict therapeutic response are needed to guide choice of treatment modality and to improve precision medicine. Here, we used a consensus hierarchical clustering approach on 509 LUAD cases from The Cancer Genome Atlas to identify five robust LUAD expression subtypes.

View Article and Find Full Text PDF

Immune checkpoint blockade (CPB) improves melanoma outcomes, but many patients still do not respond. Tumor mutational burden (TMB) and tumor-infiltrating T cells are associated with response, and integrative models improve survival prediction. However, integrating immune/tumor-intrinsic features using data from a single assay (DNA/RNA) remains underexplored.

View Article and Find Full Text PDF

Dietary intake is a major contributor to the global obesity epidemic and represents a complex behavioural phenotype that is partially affected by innate biological differences. Here, we present a multivariate genome-wide association analysis of overall variation in dietary intake to account for the correlation between dietary carbohydrate, fat and protein in 282,271 participants of European ancestry from the UK Biobank (n = 191,157) and Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 91,114), and identify 26 distinct genome-wide significant loci. Dietary intake signals map exclusively to specific brain regions and are enriched for genes expressed in specialized subtypes of GABAergic, dopaminergic and glutamatergic neurons.

View Article and Find Full Text PDF

Daytime napping is a common, heritable behavior, but its genetic basis and causal relationship with cardiometabolic health remain unclear. Here, we perform a genome-wide association study of self-reported daytime napping in the UK Biobank (n = 452,633) and identify 123 loci of which 61 replicate in the 23andMe research cohort (n = 541,333). Findings include missense variants in established drug targets for sleep disorders (HCRTR1, HCRTR2), genes with roles in arousal (TRPC6, PNOC), and genes suggesting an obesity-hypersomnolence pathway (PNOC, PATJ).

View Article and Find Full Text PDF

Subependymal giant-cell astrocytomas (SEGAs) are slow-growing brain tumors that are a hallmark feature seen in 5-10% of patients with Tuberous Sclerosis Complex (TSC). Though histologically benign, they can cause serious neurologic symptoms, leading to death if untreated. SEGAs consistently show biallelic loss of TSC1 or TSC2.

View Article and Find Full Text PDF

High-grade T1 (HGT1) bladder cancer is the highest risk subtype of non-muscle-invasive bladder cancer with unpredictable outcome and poorly understood risk factors. Here, we examined the association of somatic mutation profiles with nonrecurrent disease (GO, good outcome), recurrence (R), or progression (PD) in a cohort of HGT1 patients. Exome sequencing was performed on 62 HGT1 and 15 matched normal tissue samples.

View Article and Find Full Text PDF

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures.

View Article and Find Full Text PDF

The discovery of drivers of cancer has traditionally focused on protein-coding genes. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods.

View Article and Find Full Text PDF

Background: In metastatic urothelial carcinoma (mUC), predictive biomarkers that correlate with response to immune checkpoint inhibitors (ICIs) are lacking. Here, we interrogated genomic and clinical features associated with response to ICIs in mUC.

Methods: Sixty two mUC patients treated with ICI who had targeted tumour sequencing were studied.

View Article and Find Full Text PDF

Classical Hodgkin lymphoma (cHL) is composed of rare malignant Hodgkin Reed-Sternberg (HRS) cells within an extensive, but ineffective, inflammatory/immune cell infiltrate. HRS cells exhibit near-universal somatic copy gains of chromosome 9p/9p24.1, which increase expression of the programmed cell death protein 1 (PD-1) ligands.

View Article and Find Full Text PDF

Primary mediastinal large B-cell lymphomas (PMBLs) are aggressive tumors that typically present as large mediastinal masses in young women. PMBLs share clinical, transcriptional, and molecular features with classical Hodgkin lymphoma (cHL), including constitutive activation of nuclear factor κB (NF-κB), JAK/STAT signaling, and programmed cell death protein 1 (PD-1)-mediated immune evasion. The demonstrated efficacy of PD-1 blockade in relapsed/refractory PMBLs led to recent approval by the US Food and Drug Administration and underscored the importance of characterizing targetable genetic vulnerabilities in this disease.

View Article and Find Full Text PDF
Article Synopsis
  • Current genomics methods need to scale from handling thousands of samples to millions to keep up with rapid data generation in biomedical science.
  • By using general-purpose libraries like PyTorch and TensorFlow on GPUs, researchers can significantly reduce runtime and costs, achieving over 200 times faster processing and 5-10 times lower costs compared to traditional CPUs.
  • The increased accessibility of these GPU libraries is expected to encourage more widespread use of GPU technology in the field of computational genomics.
View Article and Find Full Text PDF

Current statistical models for assessing hotspot significance do not properly account for variation in site-specific mutability, thereby yielding many false-positives. We thus (i) detail a Log-normal-Poisson (LNP) background model that accounts for this variability in a manner consistent with models of mutagenesis; (ii) use it to show that passenger hotspots arise from all common mutational processes; and (iii) apply it to a ∼10,000-patient cohort to nominate driver hotspots with far fewer false-positives compared with conventional methods. Overall, we show that many cancer hotspot mutations recurring at the same genomic site across multiple tumors are actually passenger events, recurring at inherently mutable genomic sites under no positive selection.

View Article and Find Full Text PDF

How somatic mutations accumulate in normal cells is poorly understood. A comprehensive analysis of RNA sequencing data from ~6700 samples across 29 normal tissues revealed multiple somatic variants, demonstrating that macroscopic clones can be found in many normal tissues. We found that sun-exposed skin, esophagus, and lung have a higher mutation burden than other tested tissues, which suggests that environmental factors can promote somatic mosaicism.

View Article and Find Full Text PDF

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers.

View Article and Find Full Text PDF

Analysis of the IMvigor 210 trials involving patients with platinum-refractory or cisplatin-ineligible urothelial carcinoma who were treated with the PD-L1 inhibitor atezolizumab identified a resistance signature as an immune biomarker. Transcriptome profiling of 368 tumor samples from this trial revealed that the "genomically unstable" Lund subtype classification was associated with the best response. We developed and applied a novel single-patient subtype classifier based on The Cancer Genome Atlas 2017 expression-based molecular subtypes.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to characterize the mutational landscape across the spectrum of urothelial carcinoma (UC) to identify mutational features and potential therapeutic targets.

Experimental Design: Using targeted exome sequencing ( = 237 genes), we analyzed the mutation spectra of 82 low-grade nonmuscle-invasive bladder cancers (LG-NMIBC), 126 high-grade (HG) NMIBC, 199 muscle-invasive bladder cancers (MIBC), 10 LG-upper tract urothelial cancers (LG-UTUC), and 55 HG-UTUC.

Results: and mutations were significantly more common in LG-NMIBC (72% and 44%, respectively) versus other bladder subtypes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session25telfasp1ar3m5kq5pq5s87vclm8h2i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once