Publications by authors named "JaeGwan Park"

Highly sensitive in situ-synthesized cadmium sulfide (CdS) nanowires (NWs) for the detection of chemiluminescence in immunoassays with a photoresist (PR) layer to stabilize the CdS NWs before and after coating with a parylene film were developed. The thickness of the PR layer was controlled by adjusting the viscosity of the PR solution used for spin-coating. PR2005 was the optimal PR for passivation of the NW surface.

View Article and Find Full Text PDF

We studied optical properties and photocurrent characteristics of PbS nanowires grown by chemical vapor deposition. Distinct bandedge photoluminescence (PL) emission was observed in the mid-infrared spectral range and the quantum confinement effect estimated from the PL peak energy was within 40 meV, consistent with the average diameter of the nanowire (∼70 nm) being significantly larger than the exciton Bohr radius (∼18 nm). We also demonstrated interdigit photo detectors making use of these PbS nanowires suspended between two pre-patterned Ti electrodes, where Ti also acted as metal catalyst for the nanowire growth.

View Article and Find Full Text PDF

The direct in situ synthesis of cadmium sulfide (CdS) nanowires (NWs) was presented by direct synthesis of CdS NWs on the gold surface of an interdigitated electrode (IDE). In this work, we investigated the effect of a strong oxidant on the surfaces of the CdS NWs using X-ray photoelectron spectroscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. We also fabricated a parylene-C film as a surface passivation layer for in situ-synthesized CdS NW photosensors and investigated the influence of the parylene-C passivation layer on the photoresponse during the coating of parylene-C under vacuum using a quartz crystal microbalance and a photoanalyzer.

View Article and Find Full Text PDF

Background: Hypothermia is common during arthroscopic shoulder surgery under general anesthesia, and anesthetic-impaired thermoregulation is thought to be the major cause of hypothermia. This prospective, randomized, double-blind study was designed to compare perioperative temperature during arthroscopic shoulder surgery with interscalene brachial plexus block (IBPB) followed by general anesthesia vs. general anesthesia alone.

View Article and Find Full Text PDF

A hypersensitive CdS nanowire (NW) photosensor was fabricated by an in-situ synthesis process that involved the direct synthesis of CdS NWs on an interdigitated electrode (IDE). Analysis of the photoresponse properties showed that the newly synthesized photosensor had enhanced sensitivity and a highly reproducible photoresponse compared to photosensors prepared from CdS NW suspensions. The NW photosensor was applied to measure the chemiluminescence of luminol, and the sensitivity was compared to a commercial photosensing system.

View Article and Find Full Text PDF

The NO2 gas sensor based on SnO2 semiconducting nanowires workable at room temperature has been investigated. The network structure of SnO2 nanowires was fabricated on the electrodes by a simple thermal evaporation process from Sn metal powders and oxygen gas. The diameter of the nanowires was 20-60 nm depending on the processing conditions.

View Article and Find Full Text PDF

Single-crystalline alloy II-VI semiconductor nanostructures have been used as functional materials to propel photonic and optoelectronic device performance in a broad range of the visible spectrum. Their functionality depends on the stable modulation of the direct band gap (Eg), which can be finely tuned by controlling the properties of alloy composition, crystallinity, and morphology. We report on the structural correlation of the optical band gap anomaly of quaternary alloy CdxZn1-xSySe1-y single-crystalline nanostructures that exhibit different morphologies, such as nanowires (NWs), nanobelts (NBs), and nanosheets (NSs), and cover a wide range of the visible spectrum (Eg = 1.

View Article and Find Full Text PDF

We demonstrate a new design of Ge-based electrodes comprising three-dimensional (3-D) spherical microflowers containing crystalline nanorod networks on sturdy 1-D nanostems directly grown on a metallic current collector by facile thermal evaporation. The Ge nanorod networks were observed to self-replicate their tetrahedron structures and form a diamond cubic lattice-like inner network. After etching and subsequent carbon coating, the treated Ge nanostructures provide good electrical conductivity and are resistant to gradual deterioration, resulting in superior electrochemical performance as anode materials for LIBs, with a charge capacity retention of 96% after 100 cycles and a high specific capacity of 1360 mA h g(-1) at 1 C and a high-rate capability with reversible capacities of 1080 and 850 mA h g(-1) at the rates of 5 and 10 C, respectively.

View Article and Find Full Text PDF

We herein present the synthesis of germanium (Ge) nanowires on Au-catalyzed low-temperature substrates using a simple thermal Ge/Sn co-evaporation method. Incorporation of a low-melting point metal (Sn) enables the efficient delivery of Ge vapor to the substrate, even at a source temperature below 600 °C. The as-synthesized nanowires were found to be a core/shell heterostructure, exhibiting a uniform single crystalline Ge sheathed within a thin amorphous germanium suboxide (GeO(x)) layer.

View Article and Find Full Text PDF

High quality single-crystalline indium tin oxide (ITO) nanowires with controlled Sn contents of up to 32.5 at.% were successfully synthesized via a thermal metal co-evaporation method, based on a vapor-liquid-solid growth mode, at a substrate temperature of as low as 540 °C.

View Article and Find Full Text PDF

We synthesized free-standing Si nanosheets (NSs) with a thickness of about <2 nm using a chemical vapor deposition process and studied their optical properties. The Si NSs were formed by the formation of frameworks first along six different <110> directions normal to [111], its zone axis, and then by filling the spaces between the frameworks along the <112> directions under high flow rate of processing gas. The Si NSs showed blue emission at 435 nm, and absorbance and photoluminescence (PL) excitation measurements indicate that enhanced direct band transition attributes to the emission.

View Article and Find Full Text PDF

We report on the synthesis of CdS(x)Se(1-x) nanowires by pulsed-laser deposition and their application to optical sensors. We developed a suspended structure for a nanowire-based optical sensor. This structure comprised separated nanowires that were suspended in the desired position between two pre-patterned electrodes.

View Article and Find Full Text PDF

We report on the formation mechanism of CdS nanosheets based upon extensive scanning electron microscopy and transmission electron microscopy experiments. Two different CdS nanowires were synthesized, whose axial directions are in parallel with [0001] or [0110]. The [0001]-nanowires sustained one-dimensional growth characteristics irrespective of reaction temperature and duration.

View Article and Find Full Text PDF

We studied the effects of post-annealing in H2 and O2 ambients on field-emission properties of vertically-aligned ZnO nanowire arrays synthesized by carbothermal reduction process. The turn-on electric field was dramatically decreased from 3.78 to 2.

View Article and Find Full Text PDF

We propose a promising synthetic technique, which we term 'self-supported nanostructuring', for the direct growth of one-dimensional, SnO2 nanowires on the current collector. The technique is based on a vapor-liquid-solid (VLS) mechanism via thermal evaporation at low synthetic temperature (600 degrees C). The as-synthesized SnO2 nanowire electrode did not have any buffer layer prior to the nanowire evolution, and exhibited a single crystalline phase with highly uniform morphology and a thin diameter ranging from 40 to 50 nm with a length of more than 1 microm.

View Article and Find Full Text PDF

We demonstrate the formation of a highly conductive, Fe0/Fe3O4 nanocomposite electrode by the hydrogen reduction process. Fe2O3 nanobundles composed of one-dimensional nanowires were initially prepared through thermal dehydrogenation of hydrothermally synthesized FeOOH. The systematic phase and morphological evolutions from Fe2O3 to Fe2O3/Fe3O4, Fe3O4, and finally to Fe/Fe3O4 by the controlled thermochemical reduction at 300 degrees C in H2 were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

ZnO nanosheets were fabricated by an oxygen-assisted carbothermal reduction process and their properties were evaluated. In particular, the FET characteristics and photoluminescence properties of ZnO nanosheets were evaluated. The conduction type of ZnO nanosheets was determined as an n-type and the mobility was 20-40 cm2/ V-s, which is fairly high compared to ZnO nanowires.

View Article and Find Full Text PDF

In this paper we report the fabrication and testing of diode-type low-voltage field emission display (FED) devices with SiC-nanowire-based cathodes. The SiC-nanowire FEDs (flat vacuum lamps) were characterized by low emission threshold fields (∼2 V µm(-1)), high current density and stable long-term performance. The analysis of field emission data evidenced that the Schottky effect would have a considerable influence on the field emission from nanowire-based samples, leading to the true values of the field enhancement factor being significantly lower than those derived from Fowler-Nordheim plots.

View Article and Find Full Text PDF

We fabricated a nanowire-based gas sensor using a simple method of growing SnO(2) nanowires bridging the gap between two pre-patterned Au catalysts, in which the electrical contacts to the nanowires are self-assembled during the synthesis of the nanowires. The gas sensing capability of this network-structured gas sensor was demonstrated using a diluted NO(2). The sensitivity, as a function of temperature, was highest at 200 °C and was determined to be 18 and 180 when the NO(2) concentration was 0.

View Article and Find Full Text PDF

We present a study on the dynamic instability of a sol-gel-derived (SG) thin film on a nonwettable substrate. Because of the structural instability accompanied by syneresis stress in a film deposited on the substrate, there exists a regular distribution of dewetting patterns required to relieve the in-plane stress, such as holes in the earlier stages, and droplets accompanying a regular polygonal distribution in the later stages of the dynamic instability. The characteristic length scales in each stage scaled linearly with the film thickness during the duration of dewetting.

View Article and Find Full Text PDF

Novel SnO(2)-In(2)O(3) heterostructured nanowires were produced via a thermal evaporation method, and their possible nucleation/growth mechanism is proposed. We found that the electronic conductivity of the individual SnO(2)-In(2)O(3) nanowires was 2 orders of magnitude better than that of the pure SnO(2) nanowires, due to the formation of Sn-doped In(2)O(3) caused by the incorporation of Sn into the In(2)O(3) lattice during the nucleation and growth of the In(2)O(3) shell nanostructures. This provides the SnO(2)-In(2)O(3) nanowires with an outstanding lithium storage capacity, making them suitable for promising Li ion battery electrodes.

View Article and Find Full Text PDF

We report on the dewetting of a thin film produced by the sol-gel method. In the early stages of dynamic morphological instability, the drying stress in the capillary wave model determines the linearly scaling behaviors of the characteristic wavelength with the initial film thickness and the square law dependence of the number density of the dewetted holes on the film thickness. These power law dependences are weaker than those observed in the case of the spinodal dewetting of a polymer thin film.

View Article and Find Full Text PDF

Semiconductor nanorod arrays on a substrate have a preferential alignment orientation that minimizes the excessive free energy of the system. In the case of wet chemically synthesized zinc oxide (ZnO) nanorod on the amorphous surfaces, the thermodynamic driving force determines the orientation to be normal to the surface. Among the various kinds of amorphous surfaces, the spherical seed layer composed of ZnO precursors gives isotropic radially aligned arrays.

View Article and Find Full Text PDF

We report on the morphological dynamics of surface patterns induced by swelling of metal-capped polymer bilayer on a substrate. When the bilayer is subject to solvent vapor, the strain is generated in the polymer layer that is confined by the substrate and the metal capping layer. An increase in the strain induces the development of the stress in the bilayer to deform the lower polymer layer perpendicularly to the surface of the bilayer.

View Article and Find Full Text PDF