Publications by authors named "Jae-Sung Yu"

Development of a HIV-1 vaccine is a major global priority. The yellow fever virus (YFV) attenuated vaccine 17D is among the most effective of currently used vaccines. However, the stability of the YFV17D vector when carrying non-flavivirus genes has been problematic.

View Article and Find Full Text PDF

Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority.

View Article and Find Full Text PDF

Immunoglobulin A (IgA) antibodies exist in monomeric, dimeric, and secretory forms. Dimerization of IgA depends on a 15-kD polypeptide termed "joining (J) chain," which is also part of the binding site for an epithelial glycoprotein called "secretory component (SC)," whether this after apical cleavage on secretory epithelia is ligand bound in secretory IgA (SIgA) or in a free form. Uncleaved membrane SC, also called the "polymeric Ig receptor," is thus crucial for transcytotic export of SIgA to mucosal surfaces, where it interacts with and modulates commensal bacteria and mediates protective immune responses against exogenous pathogens.

View Article and Find Full Text PDF

An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41.

View Article and Find Full Text PDF

Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic hypermutation at any position within an Ig gene is known to depend strongly on the local DNA sequence, and Ig genes have region-specific codon biases that influence the local mutation rate within the gene resulting in increased differential mutability in the regions that encode the antigen-binding domains. We have isolated a set of clonally related natural Ig heavy chain-light chain pairs from an experimentally infected influenza patient, inferred the unmutated ancestral rearrangements and the maturation intermediates, and synthesized all the antibodies using recombinant methods.

View Article and Find Full Text PDF

Mycobacteria have features that make them attractive as potential vaccine vectors. The nonpathogenic and rapidly growing Mycobacterium smegmatis can express both Mycobacterium tuberculosis antigens and heterologous antigens from other pathogens, and it has been used as a viable vector for the development of live vaccines. In order to further improve antigen-specific immunogenicity of M.

View Article and Find Full Text PDF

Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120(W6.

View Article and Find Full Text PDF

Background: During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection.

Methods And Findings: To study hemagglutinin (HA) antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV) and compared them to the plasma cell repertoires of subjects experimentally infected (EI) with influenza H3N2 A/Wisconsin/67/2005.

View Article and Find Full Text PDF

The initial antibody response to HIV-1 is targeted to envelope (Env) gp41, and is nonneutralizing and ineffective in controlling viremia. To understand the origins and characteristics of gp41-binding antibodies produced shortly after HIV-1 transmission, we isolated and studied gp41-reactive plasma cells from subjects acutely infected with HIV-1. The frequencies of somatic mutations were relatively high in these gp41-reactive antibodies.

View Article and Find Full Text PDF

The C3-V4 region is a major target of autologous neutralizing antibodies in HIV-1 subtype C infection. We previously identified a Center for AIDS Program of Research in South Africa (CAPRISA) participant, CAP88, who developed a potent neutralizing-antibody response within 3 months of infection that targeted an epitope in the C3 region of the HIV-1 envelope (P. L.

View Article and Find Full Text PDF

Recombinant mycobacteria hold promise as vectors for delivery of HIV-1 and other pathogen antigen inserts for inducing systemic and mucosal immune responses. In general, the immunogenicity of the recombinant mycobacterial insert is proportional to the level of insert expression. In this study, a novel flow cytometry-based assay has been developed to sort live recombinant mycobacterial mutants with high expression of foreign inserts and to enrich those sorted bacterial populations.

View Article and Find Full Text PDF

Monoclonal antibodies (MAbs) were developed against soluble Ebola virus (EBOV) envelope glycoprotein (GP) for the study of the diversity of EBOV envelope and development of diagnostic reagents. Of the three anti-EBOV GP mouse MAbs produced, MAb 15H10 recognized all human EBOV GP species tested (Zaire, Sudan, Ivory Coast), and as well as reacted with the Reston nonhuman primate EBOV GPs. A second MAb, 6D11 recognized EBOV GP species of Sudan and Sudan-Gulu.

View Article and Find Full Text PDF

The prevention of infectious disease via prophylactic immunization is a mainstay of global public health efforts. Vaccine design would be facilitated by a better understanding of the type and durability of immune responses generated by different vaccine vectors. We report here the results of a comparative immunogenicity trial of six different vaccine vectors expressing the same insert antigen, cowpox virus B5 (CPXV-B5).

View Article and Find Full Text PDF

A successful vaccine vector for human immunodeficiency virus type 1 (HIV-1) should induce anti-HIV-1 T-cell immune responses at mucosal sites. We have constructed recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing an HIV-1 group M consensus envelope (Env) either as a surface, intracellular, or secreted protein as an immunogen. rBCG containing HIV-1 env plasmids engineered for secretion induced optimal Env-specific T-cell gamma interferon enzyme-linked immunospot responses in murine spleen, female reproductive tract, and lungs.

View Article and Find Full Text PDF

In-frame overlapping genes in phage, plasmid and bacterial genomes permit synthesis of more than one form of protein from the same gene. Having one gene entirely within another rather than two separate genes presumably precludes recombination events between the identical sequences. However, studies of such gene pairs indicate that the overlapping arrangement can make regulation of the genes more difficult.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a vaccine vector using Mycobacterium smegmatis to express an HIV-1 envelope protein, aiming to trigger immune responses at mucosal sites.
  • The vaccine successfully induced T-cell responses in various animal tissues, including the spleen and reproductive tract, but struggled to produce sufficient antibody responses.
  • Despite initial challenges with antibody induction, the vaccine effectively primed the immune system for a subsequent boost that enhanced anti-HIV-1 antibody responses.
View Article and Find Full Text PDF

Ebola virus (EBOV) Zaire, Sudan, as well as Ivory Coast are virulent human EBOV species. Both polyclonal and monoclonal antibodies (MAbs) were developed against soluble EBOV envelope glycoprotein (GP) for the study of EBOV envelope diversity and development of diagnostic reagents. Three EBOV Sudan-Gulu GP peptides, from the N-terminus, mid-GP, and C-terminus regions were used to immunize rabbits for the generation of anti-EBOV polyclonal antibodies.

View Article and Find Full Text PDF

Genetic variation of human immunodeficiency virus (HIV-1) represents a major obstacle for AIDS vaccine development. To decrease the genetic distances between candidate immunogens and field virus strains, we have designed and synthesized an artificial group M consensus env gene (CON6 gene) to be equidistant from contemporary HIV-1 subtypes and recombinants. This novel envelope gene expresses a glycoprotein that binds soluble CD4, utilizes CCR5 but not CXCR4 as a coreceptor, and mediates HIV-1 entry.

View Article and Find Full Text PDF