Our previous phase I/IIA study showed that autologous dendritic cells (DCs) pulsed with tumor-associated antigens are well tolerated in patients with hepatocellular carcinoma (HCC). In this randomized, multicenter, open-label, phase II trial, we investigated the efficacy and safety of this DC-based adjuvant immunotherapy with 156 patients, who treated for HCC with no evidence of residual tumor after standard treatment modalities. Patients were randomly assigned to immunotherapy ( = 77; injection of 3 × 10 DC cells, six times over 14 weeks) or control ( = 79; no treatment).
View Article and Find Full Text PDFBackground: To date, no adjuvant treatment has been shown to have a clear benefit in patients with hepatocellular carcinoma (HCC). In this prospective phase I/IIa study, we evaluated the safety and efficacy of adjuvant dendritic cell (DC) therapy in HCC patients who received primary treatment for HCC.
Methods: Twelve HCC patients who had no viable tumour after primary treatments were included.
Beta-glucan (β-glucan) including zymosan has been known as a super food because of its multifunctional activities, such as the enhancement of immune responses. To study the functional mechanism of β-glucan in immune stimulation, the effect of zymosan on dendritic cell (DC) was investigated by monitoring the production of TNF-α, a pro-inflammatory cytokine. DC was differentiated from Mutz-3, a human acute myeloid leukemia cell line, by cytokine treatment and characterized.
View Article and Find Full Text PDFWe report the successful application of multiwall carbon nanotubes (CNTs) as electrocatalysts for triiodide reduction in a dye-sensitized solar cell (DSSC). Defect-rich edge planes of bamboolike-structure multiwall CNTs facilitate the electron-transfer kinetics at the counter electrode-electrolyte interface, resulting in low charge-transfer resistance and an improved fill factor. In combination with a dye-sensitized TiO2 photoanode and an organic liquid electrolyte, a multiwall CNT counter-electrode DSSC shows 7.
View Article and Find Full Text PDFNano rutile, anatase, and bicrystalline (anatase + brookite) titania powders with an average crystal size of below 10 nm are prepared from aqueous TiOCl(2) solution at low temperatures by adjusting pH values of the starting solution and adding different additives. Adding a small amount of octyl phenol poly(ethylene oxide) into aqueous TiOCl(2) solution leads to the change of particle morphologies of obtained nano titania from needlelike to nano spherical rutile crystals. Amorphous-anatase transformation of titania could proceed in liquid-solid reaction at low temperatures, even at room temperature.
View Article and Find Full Text PDF