Publications by authors named "Jae-Soo Chang"

Effects of trehalose lipids produced from ATCC 4277 on phenanthrene (PHE) mineralization by two soil microorganisms were investigated. Biodegradation experiments were conducted, with and without the biosurfactant, in three batch systems: water, soil, and soil-water slurry. PHE sorption to the soil did not limit the mineralization by the test microorganisms, strain R (PR) and sp.

View Article and Find Full Text PDF

For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S.

View Article and Find Full Text PDF

Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g.

View Article and Find Full Text PDF

Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.

View Article and Find Full Text PDF

The preparation conditions of electro-modification (current density) and pyrolysis (pyrolysis temperature and heating rate) processes were simultaneously optimized using response surface methodology with the quadratic regression model associated with Box-Behnken design. By numerical optimization, the phosphate adsorption capacity of 245.06mg/g was achieved, corresponding to 99.

View Article and Find Full Text PDF

This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns.

View Article and Find Full Text PDF

A novel microbial consortium (BM-S-1) enriched from natural soils was successfully used to treat tannery wastewater from leather manufacturing industries in Korea on a pilot scale. The objective of this study was to determine whether augmentation with a novel microbial consortium BM-S-1could successfully treat the recalcitrant wastewater without chemical pre-treatment in a tannery wastewater treatment system. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were monitored for water quality.

View Article and Find Full Text PDF

The cationic organic polymers used to enhance thickening and dewatering processes are potential sources of strong odors. These polymers vary in chemical structure, and some may be more susceptible to biotic or abiotic degradation than others. The product organic amines will be volatilized most noticeably at high pH, as in lime addition.

View Article and Find Full Text PDF

Effects of trehalose lipid biosurfactants produced by Rhodococcus erythropolis on the solubilization and biodegradation of phenanthrene (PHE) were investigated. Based on surface tension measurements, the average critical micelle concentration (CMC) of trehalose lipids was determined to be approximately 16 mg total organic carbon (TOC)/L. In solubilization assays, the addition of biosurfactants at 20-fold the CMC increased the apparent solubility of PHE by more than 30-fold.

View Article and Find Full Text PDF