Novel composites of silicon monoxide, pyrolytic carbon and carbon nanofiber (SiO/PyC/CNF) were hybridized with natural graphite (NG) as a means of improving the anodic performance of Li-ion batteries. Samples were made with hybridization levels of 10-30 wt% of NG exhibited excellent cyclability with a discharge capacity of 389-522 mAh g(-1) in a Li-ion battery system. SiO/PyC/CNF composite hybrids showed better cyclability than other carbon composites containing SiO/PyC and SiO/CNF.
View Article and Find Full Text PDFBoron-doped graphitized carbon nanofibers (CNFs) were prepared by optimizing CNFs preparation, surface treatment, graphitization and boron-added graphitization. The interlayer spacing (d₀₀₂) of the boron-doped graphitized CNFs reached 3.356 Å, similar to that of single-crystal graphite.
View Article and Find Full Text PDF