Publications by authors named "Jae-Seo Park"

Lightweight structural materials are commonly used as effective fillers for advanced composites with high toughness. This study focused on enhancing the toughness of direct-spun carbon nanotube yarns (CNTYs) by controlling the micro-textural structure using a water-gap-based direct spinning. Drawing inspiration from the structural features of natural spider silk fibroin, characterized by an α-helix in the amorphous region and β-sheet in the crystalline region, multiscale bundles within CNTYs are reorganized into a unique nano-coil-like structure.

View Article and Find Full Text PDF

Fiber-type solid-state supercapacitors are being widely investigated as stable power supply for next-generation wearable and flexible electronics. Integrating both high charge storage capability and superior mechanical properties into one fiber is crucial to realize fiber-type solid-state supercapacitors. In this study, we design a “jeweled necklace”–like hybrid composite fiber comprising double-walled carbon nanotube yarn and metal-organic frameworks (MOFs).

View Article and Find Full Text PDF

We developed a new category of porous silica and organosilicas nanostructures in a facile method based on weakly acidic aqueous-ethanol media by utilizing two different pentablock copolymer templates of type PLGA-PEO-PPO-PEO-PLGA. Pluronic block templates were used mainly to prepare these pentablock copolymers with different molecular weights and volume ratios. Silica precursor tetraethyl orthosilicate and organosilicas precursor 1,4-bis(triethoxysilyl)benzene have been used as main source for synthesizing the silica and organosilicas samples.

View Article and Find Full Text PDF

It is of importance to explore a new carbon nanomaterial possessing vital functions to fulfill the high standards for practical achievement of the electromagnetic (EM) barrier for blocking EM waves and the electrochemical (EC) barrier as a functional separator for EC energy storage. Herein, facile synthesis of a new class of carbon nanostructures, which consist of interconnected N-doped graphitic carbon nanocubes partially embedded by nickel nanoparticles, is described. The hollow interior of graphitic nanocube induces internal reflection of EM waves and confines active materials of EC energy storage.

View Article and Find Full Text PDF

Ca- and Li-doped mesoporous silicas have been prepared successfully using cetyltrimethylammonium bromide (CTAB) surfactant in basic media. Sol-gel synthesis and hydrothermal treatment produced highly ordered mesoporous Ca and Li loaded silica particles. The MCM-41 type mesostructures, the porosity, the pore sizes as well as the surface area of Ca- and Li-silicas have been thoroughly investigated using small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and N sorption analysis.

View Article and Find Full Text PDF