Fast and accurate identification of pathogenic microbes in patient samples is crucial for the timely treatment of acute infectious diseases such as sepsis. The fluorescence in situ hybridization (FISH) technique allows the rapid detection and identification of microbes based on their variation in genomic sequence without time-consuming culturing or sequencing. However, the recent explosion of microbial genomic data has made it challenging to design an appropriate set of probes for microbial mixtures.
View Article and Find Full Text PDFThe current diagnosis of bacteremia mainly relies on blood culture, which is inadequate for the rapid and quantitative determination of most bacteria in blood. Here, a quantitative, multiplex, microfluidic fluorescence in situ hybridization method (μFISH) is developed, which enables early and rapid (3-h) diagnosis of bacteremia without the need for prior blood culture. This novel technology employs mannose-binding lectin-coated magnetic nanoparticles, which effectively opsonize a broad range of pathogens, magnetically sequestering them in a microfluidic device.
View Article and Find Full Text PDFThe three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging.
View Article and Find Full Text PDF