Publications by authors named "Jae-Kwang Ahn"

Effective response strategies to earthquake disasters are crucial for disaster management in smart cities. However, in regions where earthquakes do not occur frequently, model construction may be difficult due to a lack of training data. To address this issue, there is a need for technology that can generate earthquake scenarios for response training at any location.

View Article and Find Full Text PDF

Realistic synthetic data can be useful for data augmentation when training deep learning models to improve seismological detection and classification performance. In recent years, various deep learning techniques have been successfully applied in modern seismology. Due to the performance of deep learning depends on a sufficient volume of data, the data augmentation technique as a data-space solution is widely utilized.

View Article and Find Full Text PDF