While a majority of wireless microrobots have shown multi-responsiveness to implement complex biomedical functions, their functional executions are strongly dependent on the range of stimulus inputs, which curtails their functional diversity. Furthermore, their responsive functions are coupled to each other, which results in the overlap of the task operations. Here, a 3D-printed multifunctional microrobot inspired by pollen grains with three hydrogel components is demonstrated: iron platinum (FePt) nanoparticle-embedded pentaerythritol triacrylate (PETA), poly N-isopropylacrylamide (pNIPAM), and poly N-isopropylacrylamide acrylic acid (pNIPAM-AAc) structures.
View Article and Find Full Text PDFVarious functional complex 3D patterned surfaces with micro- or nanostructures have been developed and their superior performances over non-patterned smooth surfaces proven. However, it is challenging to mass-produce such complex micro-/nanopatterned surfaces, which limits their commercialization drastically. Although roll-to-roll (R2R) manufacturing using flexible molds has been implemented for mass-production of such functional surfaces, the poor mold repeatability issue has not been resolved yet.
View Article and Find Full Text PDFWireless soft-bodied robots at the millimeter scale allow traversing very confined unstructured terrains with minimal invasion and safely interacting with the surrounding environment. However, existing untethered soft millirobots still lack the ability of climbing, reversible controlled surface adhesion, and long-term retention on unstructured three-dimensional (3D) surfaces, limiting their use in biomedical and environmental applications. Here, we report a fundamental peeling-and-loading mechanism to allow untethered soft-bodied robots to climb 3D surfaces by using both the soft-body deformation and whole-body motion of the robot under external magnetic fields.
View Article and Find Full Text PDFIn contrast to common adhesives used in joining, directional adhesives are designed for a dynamic attachment/detachment operation and, hence, their performance is assessed not only in an activated mode but also in a disactivated mode. Consequently, in addition to a peak adhesive strength, a ratio of maximum over minimum attachment force, which can be called a shear-driven amplification factor, is utilized for their characterization. Considering that the peak adhesive response and the amplification factor both depend on the elasticity of the microstructured surface, here we report a combined numerical and experimental study of the effect of the Young's modulus on the attachment properties of flap-shaped contact elements drawn from polyurethane.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Although biomimetic technologies for dry reversible adhesion seem to be maturing, the costs, complexity, and time expenditures associated with the current template-based molding techniques call for research on other fabrication methods. In this paper, we report a novel cost-effective, simple, and flexible drawing-based technique for manufacturing the soft elastomeric thin-film-based microstructures needed for successful implementation of the principles of biological shear-activated adhesion. Several different types of adhesive microstructures are fabricated, and the best of them demonstrate shear-driven amplification of pull-off force by a factor of 40, which significantly outperforms known molded analogues.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2019
Splitting a large contact area into finer, sub-contact areas is thought to result in higher adaptability to rough surfaces, stronger adhesion, and a more uniform stress distribution with higher tolerance to defects. However, while it is widely believed that contact splitting helps to mitigate the negative effects of roughness on adhesion- and friction-based attachment, no decisive experimental validation of this hypothesis has been performed so far for thin-film-based adhesives. To this end, we report on the behavior of original and split, wall-shaped adhesive microstructures on different surfaces ranging across four orders of magnitude in roughness.
View Article and Find Full Text PDFTo date, a handful of different gecko-like adhesives inspired by spatula-shaped attachment hairs have been suggested based on wedge and flap geometry of contact elements. However, while these surface designs have been shown to have directionality in adhesion, high friction, long lifetime and the ability to work in vacuum, an experimental verification of the very basic concept of the pulling angle effect has not yet been reported. To close this gap, here we use wall-shaped adhesive microstructures of three different flap heights to systematically study the effect of pulling angle on the normal and tangential components of the pull-off force tested at different preliminary tangential displacements.
View Article and Find Full Text PDFFabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes.
View Article and Find Full Text PDF