In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in (C57BL/6), using a deep tissue imaging custom-built two-photon microscope.
View Article and Find Full Text PDFDopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain.
View Article and Find Full Text PDFDopamine synapses play a crucial role in volitional movement and reward-related behaviors, while dysfunction of dopamine synapses causes various psychiatric and neurological disorders. Despite this significance, the true biological nature of dopamine synapses remains poorly understood. Here, we show that dopamine transmission is strongly correlated with GABA co-transmission across the brain and dopamine synapses are structured and function like GABAergic synapses with marked regional heterogeneity.
View Article and Find Full Text PDFAmyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, . However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown.
View Article and Find Full Text PDFCa signaling is implicated in the transition between microglial surveillance and activation. Several L-type Ca channel blockers (CCBs) have been shown to ameliorate neuroinflammation by modulating microglial activity. In this study, we examined the effects of the L-type CCB felodipine on LPS-mediated proinflammatory responses.
View Article and Find Full Text PDFProgressive iron accumulation in the substantia nigra in the aged human brain is a major risk factor for Parkinson's disease and other neurodegenerative diseases. Heavy metals, such as iron, produce reactive oxygen species and consequently oxidative stress in cells. It is unclear, however, how neurons in the substantia nigra are protected against the age-related, excessive accumulation of iron.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that and double knock-out ( DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc).
View Article and Find Full Text PDFBackground: The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons.
View Article and Find Full Text PDFO-GlcNAcylation is a posttranslational modification that adds O-linked β-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues of many proteins. This protein modification interacts with key cellular pathways involved in transcription, translation, and proteostasis. Although ubiquitous throughout the body, O-GlcNAc is particularly abundant in the brain, and various proteins commonly found at synapses are O-GlcNAcylated.
View Article and Find Full Text PDFEthnopharmacological Relevance: Vernicia fordii (Hemsl.) Airy Shaw (V. fordii) is also known as the tung tree and its leaves and fruit are used as an oriental treatment for dyspepsia, edema, and skin diseases, which are known as diabetic complications.
View Article and Find Full Text PDFEpilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance.
View Article and Find Full Text PDFThe dopamine system in the midbrain is essential for volitional movement, action selection, and reward-related learning. Despite its versatile roles, it contains only a small set of neurons in the brainstem. These dopamine neurons are especially susceptible to Parkinson's disease and prematurely degenerate in the course of disease progression, while the discovery of new therapeutic interventions has been disappointingly unsuccessful.
View Article and Find Full Text PDFRegulating amyloid beta (Aβ) pathology and neuroinflammatory responses holds promise for the treatment of Alzheimer's disease (AD) and other neurodegenerative and/or neuroinflammation-related diseases. In this study, the effects of KVN93, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), on cognitive function and Aβ plaque levels and the underlying mechanism of action were evaluated in 5x FAD mice (a mouse model of AD). KVN93 treatment significantly improved long-term memory by enhancing dendritic synaptic function.
View Article and Find Full Text PDFGeneration of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet.
View Article and Find Full Text PDFMemory is stored in our brains over a temporally graded transition. With time, recently formed memories are transformed into remote memories for permanent storage; multiple brain regions, such as the hippocampus and neocortex, participate in this process. In this study, we aimed to understand the molecular mechanism of systems consolidation of memory and to investigate the brain regions that contribute to this regulation.
View Article and Find Full Text PDFSynaptic inhibition plays a fundamental role in the information processing of neural circuits. It sculpts excitatory signals and prevents hyperexcitability of neurons. Owing to these essential functions, dysregulated synaptic inhibition causes a plethora of neurological disorders, including epilepsy, autism, and schizophrenia.
View Article and Find Full Text PDFSynaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C.
View Article and Find Full Text PDFMemory reconsolidation is the process by which previously consolidated memories reenter a labile state through reactivation of the memory trace and are actively consolidated through de novo protein synthesis. Although extensive studies have shown that β-adrenergic signaling plays a critical role in the restabilization of reactivated memory, its role in the destabilization of long-term memory is not well-studied. In this study, we found that membrane excitability increased in hippocampal CA1 neurons immediately after the retrieval of contextual fear memory.
View Article and Find Full Text PDFNeural circuits involving midbrain dopaminergic (DA) neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β) signaling to promote the growth of axons and dendrites.
View Article and Find Full Text PDFUnlabelled: MicroRNAs (miRNAs) are small, noncoding RNAs that posttranscriptionally regulate gene expression in many tissues. Although a number of brain-enriched miRNAs have been identified, only a few specific miRNAs have been revealed as critical regulators of synaptic plasticity, learning, and memory. miR-9-5p/3p are brain-enriched miRNAs known to regulate development and their changes have been implicated in several neurological disorders, yet their role in mature neurons in mice is largely unknown.
View Article and Find Full Text PDFCD38 is an enzyme that catalyzes the formation of cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate, both of which are involved in the mobilization of Ca(2+) from intracellular stores. Recently, CD38 has been shown to regulate oxytocin release from hypothalamic neurons. Importantly, CD38 mutations are associated with autism spectrum disorders (ASD) and CD38 knockout (CD38(-/-)) mice display ASD-like behavioral phenotypes including deficient parental behavior and poor social recognition memory.
View Article and Find Full Text PDFMidbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67.
View Article and Find Full Text PDFDynamic adaptations in synaptic plasticity are critical for learning new motor skills and maintaining memory throughout life, which rapidly decline with Parkinson's disease (PD). Plasticity in the motor cortex is important for acquisition and maintenance of motor skills, but how the loss of dopamine in PD leads to disrupted structural and functional plasticity in the motor cortex is not well understood. Here we used mouse models of PD and two-photon imaging to show that dopamine depletion resulted in structural changes in the motor cortex.
View Article and Find Full Text PDFChanges in basal ganglia plasticity at the corticostriatal and thalamostriatal levels are required for motor learning. Endocannabinoid-dependent long-term depression (eCB-LTD) is known to be a dominant form of synaptic plasticity expressed at these glutamatergic inputs; however, whether eCB-LTD can be induced at all inputs on all striatal neurons is still debatable. Using region-specific Cre mouse lines combined with optogenetic techniques, we directly investigated and distinguished between corticostriatal and thalamostriatal projections.
View Article and Find Full Text PDF